The effect of magnetic filtering on the electron energy distribution function is studied in an inductive discharge with internal coil coupling. The coil is placed inside the plasma and driven by a low-frequency power supply (5.8 MHz) which leads to a very high power transfer efficiency. A permanent dipole magnet may be placed inside the internal coil to produce a static magnetic field around 100 Gauss. The coil and the matching system are designed to minimize the capacitive coupling to the plasma. Capacitive coupling is quantified by measuring the radiofrequency (rf) plasma potential with a capacitive probe. Without the permanent magnet, the rf plasma potential is significantly smaller than the electron temperature. When the magnet is present, the rf plasma potential increases. The electron energy distribution function is measured as a function of space with and without the permanent magnet. When the magnet is present, electrons are cooled down to low temperature in the downstream region. This region of low electron temperature may be useful for plasma processing applications, as well as for efficient negative ion production.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley-Interscience
,
2005
).
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
3.
K. W.
Ehlers
and
K. N.
Leung
,
Rev. Sci. Instrum.
52
,
1452
(
1981
).
4.
K.
Leung
and
K.
Ehlers
,
Rev. Sci. Instrum.
54
,
56
(
1983
).
5.
D.
Sheehan
and
N.
Rynn
,
Rev. Sci. Instrum.
59
,
1369
(
1988
).
6.
P.
Chabert
,
T. E.
Sheridan
,
R. W.
Boswell
, and
J.
Perrin
,
Plasma Sources Sci. Technol.
8
,
561
(
1999
).
7.
R.
Hemsworth
and
T.
Inoue
,
IEEE Trans. Plasma Sci.
33
,
1799
(
2005
).
8.
I.
Hong
,
Y.
Cho
, and
Y.
Hwang
,
J. Korean Phys. Soc.
48
(4),
716
(
2006
).
9.
S.
Kolev
,
G. J. M.
Hagelaar
, and
J. P.
Boeuf
,
Phys. Plasmas
16
,
042318
(
2009
).
10.
A.
Aanesland
,
A.
Meige
, and
P.
Chabert
,
J. Phys.: Conf. Ser.
162
,
012009
(
2009
).
11.
J.
Bredin
,
P.
Chabert
, and
A.
Aanesland
,
Appl. Phys. Lett.
102
,
154107
(
2013
).
12.
S.
Banna
,
A.
Agarwal
,
G.
Cunge
,
M.
Darnon
,
E.
Pargon
, and
O.
Joubert
,
J. Vac. Sci. Technol. A
30
,
040801
(
2012
).
13.
S. G.
Walton
,
D.
Leonhardt
,
R. F.
Fernsler
, and
R. A.
Meger
,
Appl. Phys. Lett.
83
,
626
(
2003
).
14.
H.
Amemiya
,
Jpn. J. Appl. Phys.
30
,
2601
(
1991
).
15.
N.
Hershkowitz
and
T.
Intrator
,
Rev. Sci. Instrum.
52
,
1629
(
1981
).
16.
N.
Hayashi
,
T.
Nakashima
, and
H.
Fujita
,
Jpn. J. Appl. Phys Part 1
38
,
4301
(
1999
).
17.
I.
Djermanov
,
S.
Kolev
,
S.
Lishev
,
A.
Shivarova
, and
T.
Tsankov
,
J. Phys.: Conf. Ser.
63
,
012021
(
2007
).
18.
A.
Aanesland
,
J.
Bredin
,
P.
Chabert
, and
V.
Godyak
,
Appl. Phys. Lett.
100
,
044102
(
2012
).
19.
V.
Godyak
,
R.
Piejak
, and
B.
Alexandrovich
,
J. Appl. Phys.
85
,
703
(
1999
).
20.
V. A.
Godyak
,
Plasma Sources Sci. Technol.
20
,
025004
(
2011
).
21.
S.
Savas
and
K.
Donohoe
,
Rev. Sci. Instrum.
60
,
3391
(
1989
).
22.
See http://www.plasmasensors.com/ for Plasma Sensors.
23.
V. A.
Godyak
and
V. I.
Demidov
,
J. Phys. D: Appl. Phys.
44
,
233001
(
2011
).
24.
H.-J.
Lee
,
I.-D.
Yang
, and
K.-W.
Whang
,
Plasma Sources Sci. Technol.
5
,
383
388
(
1996
).
25.
M. M.
Turner
and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
8
,
313
(
1999
).
26.
P.
Chabert
,
A. J.
Lichtenberg
,
M.
Lieberman
, and
A. M.
Marakhtanov
,
Plasma Sources Sci. Technol.
10
,
478
(
2001
).
27.
P.
Chabert
,
A.
Lichtenberg
,
M.
Lieberman
, and
A.
Marakhtanov
,
J. Appl. Phys.
94
,
831
(
2003
).
28.
V.
Godyak
and
B.
Alexandrovich
,
Appl. Phys. Lett.
84
,
1468
(
2004
).
29.
A.
Dyson
,
P.
Bryant
, and
J. E.
Allen
,
Meas. Sci. Technol.
11
,
554
(
2000
).
30.
V.
Godyak
,
R.
Piejak
, and
B.
Alexandrovich
,
Plasma Sources Sci. Technol.
11
,
525
(
2002
).
31.
V. A.
Godyak
,
IEEE Trans. Plasma Sci.
34
,
755
(
2006
).
You do not currently have access to this content.