A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is found that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.

1.
I.
Podgornyi
and
R. Z.
Sagdeev
,
Sov. Phys. Usp.
12
,
445
(
1970
).
2.
W. M.
Manheimer
and
R. F.
Fernsler
,
IEEE Trans. Plasma Sci.
29
,
75
(
2001
).
3.
G. R.
Seikel
,
Electric Propulsion for Spacecraft
(
1962
), Vol.
22
, p.
19
.
4.
K.
Kuriki
and
O.
Okada
,
Phys. Fluids
13
,
2262
(
1970
).
5.
E. L.
Walker
and
G. R.
Seikel
, “
Axisymmetric expansion of a plasma in a magnetic nozzle including thermal conduction
,” Technical Report No. TN D-6154, NASA,
1971
.
6.
E.
Ahedo
and
M.
Merino
,
Phys. Plasmas
17
,
073501
(
2010
).
7.
E.
Ahedo
,
Plasma Phys. Controlled Fusion
53
,
124037
(
2011
).
8.
E.
Ahedo
,
Phys. Plasmas
18
,
033510
(
2011
).
9.
M.
Merino
and
E.
Ahedo
,
Phys. Plasmas
20
,
023502
(
2013
).
10.
D.
Miller
and
G. W.
Bethke
,
AIAA J.
4
,
932
(
1966
).
11.
J. C.
Sercel
, “
An experimental and theoretical study of the ECR plasma engine
,” Ph.D. thesis, (
Cal. Tech., Pasadena, CA
,
1993
).
12.
B.
Stallard
,
E.
Hooper
, and
J.
Power
,
J. Propul. Power
12
,
814
(
1996
).
13.
R.
Winglee
,
T.
Ziemba
,
L.
Giersch
,
J.
Prager
,
J.
Carscadden
, and
B.
Roberson
,
Phys. Plasmas
14
,
063501
(
2007
).
14.
D.
Pavarin
,
F.
Ferri
,
M.
Manente
,
D.
Curreli
,
D.
Guclu
,
Y.
Melazzi
,
D.
Rondini
,
S.
Suman
,
J.
Carlsson
,
C.
Bramanti
,
E.
Ahedo
,
V.
Lancellotti
,
K.
Katsonis
, and
G.
Markelov
, in
Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, MI
, Paper No. 205 (
Electric Rocket Propulsion Society
,
Fairview Park, OH
,
2009
).
15.
S.
Pottinger
,
V.
Lappas
,
C.
Charles
, and
R.
Boswell
,
J. Phys. D: Appl. Phys.
44
,
235201
(
2011
).
16.
K.
Takahashi
,
T.
Lafleur
,
C.
Charles
,
P.
Alexander
, and
R. W.
Boswell
,
Phys. Rev. Lett.
107
,
235001
(
2011
).
17.
L. T.
Williams
and
M. L. R.
Walker
,
J. Propul. Power
29
(
3
),
520
(
2013
).
18.
A.
Shabshelowitz
and
A. D.
Gallimore
,
J. Propul. Power
29
(
4
),
919
(
2013
).
19.
S. A.
Cohen
,
N.
Siefert
,
S.
Stange
,
R.
Boivin
,
E.
Scime
, and
F.
Levinton
,
Phys. Plasmas
10
,
2593
(
2003
).
20.
B. W.
Longmier
,
L. D.
Cassady
,
M. G.
Ballenger
,
M. D.
Carter
,
F. R.
Chang-Diaz
,
T. W.
Glover
,
A. V.
Ilin
,
G. E.
McCaskill
,
C. S.
Olsen
, and
J. P.
Squire
,
J. Propul. Power
27
,
915
(
2011
).
21.
I. G.
Mikellides
,
P. G.
Mikellides
,
P. J.
Turchi
, and
T. M.
York
,
J. Propul. Power
18
,
152
(
2002
).
22.
J. M.
Little
,
A. S.
Rubin
, and
E. Y.
Choueiri
, in
Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany
, Paper No. 2011–229 (
Electric Rocket Propulsion Society
,
Fairview Park, OH
,
2009
).
23.
J. E.
Polk
,
W.
v. Jaskowsky
,
A. J.
Kelley
, and
R. G.
Jahn
,
J. Propul. Power
3
,
33
(
1987
).
24.
I. G.
Mikellides
,
I.
Katz
, and
R. R.
Hofer
, “
Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations
,” AIAA Paper 2011–5809.
25.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase II: Experiments
,” AIAA Paper 2012–3788.
26.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
, “
Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment
,” AIAA Paper 2012–3789.
27.
A.
Schwabedissen
,
E. C.
Benck
, and
J. R.
Roberts
,
Phys. Rev. E
55
,
3450
3459
(
1997
).
28.
R. W.
Moses
, Jr.
,
R. A.
Gerwin
, and
K. F.
Schoenberg
,
AIP Conf. Proc.
246
,
1293
(
1992
).
29.
E. B.
Hooper
,
J. Propul. Power
9
,
757
(
1993
).
30.
A. V.
Arefiev
and
B. N.
Breizman
,
Phys. Plasmas
12
,
043504
(
2005
).
31.
E.
Ahedo
and
M.
Merino
,
Phys. Plasmas
18
,
053504
(
2011
).
32.
E.
Ahedo
and
M.
Merino
,
Phys. Plasmas
19
,
083501
(
2012
).
33.
R.
Comfort
, “
Modeling magnetospheric plasma
,”
Geophys. Monogr.
44
,
51
(
1988
).
34.
B. W.
Longmier
,
E. A.
Bering
 III
,
M. D.
Carter
,
L. D.
Cassady
,
W. J.
Chancery
,
F. R. C.
Díaz
,
T. W.
Glover
,
N.
Hershkowitz
,
A. V.
Ilin
,
G. E.
McCaskill
 et al,
Plasma Sources Sci. Technol.
20
,
015007
(
2011
).
35.
C.
Charles
,
Plasma Sources Sci. Technol.
16
,
R1
(
2007
).
36.
A. B.
Sefkow
and
S. A.
Cohen
,
Phys. Plasmas
16
,
053501
(
2009
).
37.
E.
Ahedo
and
M.
Martínez Sánchez
,
Phys. Rev. Lett.
103
,
135002
(
2009
).
38.
N.
Singh
,
Phys. Plasmas
18
,
122105
(
2011
).
39.
C.
Charles
and
R.
Boswell
,
Phys. Plasmas
11
,
1706
(
2004
).
40.
R. G.
Jahn
,
Physics of Electric Propulsion
(
McGraw-Hill, Inc.
,
New York
,
1968
).
41.
E.
Ahedo
, in
Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, MI
, Paper No. 193 (
Electric Rocket Propulsion Society
,
Fairview Park, OH
,
2009
).
42.
D. A.
Carl
,
M.
Williamson
,
M.
Lieberman
, and
A.
Lichtenberg
,
J. Vac. Sci. Technol. B
9
,
339
(
1991
).
43.
A.
Ellingboe
and
R.
Boswell
,
Phys. Plasmas
3
,
2797
(
1996
).
44.
C. M.
Franck
,
O.
Grulke
, and
T.
Klinger
,
Phys. Plasmas
10
,
323
(
2003
).
45.
S.
Andersen
,
V. O.
Jensen
,
P.
Nielsen
, and
N.
D'Angelo
,
Phys. Fluids
12
,
557
(
1969
).
46.
D. L.
Chubb
,
AIAA J.
10
,
113
(
1972
).
47.
G. I.
Dimov
and
S. Y.
Taskaev
, in
Proceedings of the 27th EPS Conference on Controlled Fusion and Plasma Physics, Budapest, Hungary
(
American Institute of Aeronautics and Astronautics
,
Washington, DC
,
2000
), ECA Vol.
24B
, pp.
464
467
.
48.
A.
Fruchtman
,
K.
Takahashi
,
C.
Charles
, and
R.
Boswell
,
Phys. Plasmas
19
,
033507
(
2012
).
49.
A. V.
Arefiev
and
B. N.
Breizman
,
Phys. Plasmas
15
,
042109
(
2008
).
50.
C. A.
Deline
,
R. D.
Bengtson
,
B. N.
Breizman
,
M. R.
Tushentsov
,
J. E.
Jones
,
D. G.
Chavers
,
C. C.
Dobson
, and
B. M.
Schuettpelz
,
Phys. Plasmas
16
,
033502
(
2009
).
51.
K.
Takahashi
,
Y.
Itoh
, and
T.
Fujiwara
,
J. Phys. D: Appl. Phys.
44
,
015204
(
2011
).
52.
M.
Merino
and
E.
Ahedo
, “
Magnetic Nozzle Far-Field Simulation
,” AIAA Paper No. 2012–3843.
53.
F. F.
Chen
and
M. A.
Lieberman
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum Press
,
New York
,
1984
).
54.
T.
Sakurai
,
Space Sci. Rev.
51
,
11
(
1989
).
55.
E.
Ahedo
,
Phys. Plasmas
16
,
113503
(
2009
).
56.
R. A.
Gerwin
, “
Integrity of the plasma magnetic nozzle
,” Technical Report No. TP-2009-213439, NASA,
2009
.
You do not currently have access to this content.