Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

1.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 2nd ed. (
CRC Press
,
Boca Raton
,
2007
).
2.
D.
Shiffler
,
J.
Heggemeier
,
M.
LaCour
,
K.
Golby
, and
M.
Ruebush
, “
Low level plasma formation in a carbon velvet cesium iodide coated cathode
,”
Phys. Plasmas
11
(
4
),
1680
1684
(
2004
).
3.
C. D.
Child
, “
Discharge from hot CaO
,”
Phys. Rev. Ser. I
32
(
5
),
492
511
(
1911
).
4.
K.
Kanaya
and
S.
Okayama
, “
Penetration and energy-loss theory of electrons in solid targets
,”
J. Phys. D
5
(
1
),
43
58
(
1972
).
5.
Magic Tools Suite version 7.48, Mission Research Corporation, Arlington, Virginia.
6.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
, “
Review of cold cathode research at the air force research laboratory
,”
IEEE Trans. Plasma Sci.
36
(
3
),
718
728
(
2008
).
7.
G. A.
Mesyats
,
Pulsed Power
(
Kluwer/Plenum Publisher
,
New York
,
2005
).
8.
S. B.
Fairchild
,
T. C.
Back
,
P. T.
Murray
,
M. N.
Cahay
, and
D. A.
Shiffler
, “
Low work function CsI coatings for enhanced field emission properties
,”
J. Vac. Sci. Technol.
29
(
3
),
031402
(
2011
).
9.
V.
Vlahos
,
J.
Booske
, and
D.
Morgan
, “
Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes
,”
Appl. Phys. Lett.
91
(
14
),
144102
(
2007
).
10.
C. F.
Lynn
,
A. A.
Neuber
,
J. W.
Walter
,
J. C.
Dickens
, and
M.
Kristiansen
, “
Light emission from CsI-coated carbon velvet cathodes under varied conditions
,”
IEEE Trans. Plasma Sci.
40
(
12
),
3449
3454
(
2012
).
11.
M. B.
Nejad
,
Md. A.
Mohamed
,
A. A.
Elmustafa
,
P.
Adderley
,
J.
Clark
,
S.
Covert
,
J.
Hanknecht
,
C.
Hernandes-Garcia
,
M.
Poelker
,
R.
Mammei
,
K.
Surles-Law
, and
P.
Williams
, “
Evaluation of niobium as a candidate electrode material for DC high voltage photoelectron guns
,”
Phys. Rev. ST Accel. Beams
15
(
8
),
083502
(
2012
).
12.
J.
Parson
,
J. C.
Dickens
,
J. W.
Walter
,
A. A.
Neuber
, and
M.
Kristiansen
, “
Gas evolution of nickel, stainless steel 316 and titanium anodes in vacuum sealed tubes
,” in
2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC), 3–7 June
(
2012
), pp.
239
240
.
You do not currently have access to this content.