Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 1014 to 1.8 × 1015 W/cm2. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

1.
R.
Betti
,
C.
Zhou
,
K.
Anderson
,
L.
Perkins
, and
A.
Solodov
,
Phys. Rev. Lett.
98
,
155001
(
2007
).
2.
S.
Depierreux
,
P.
Loiseau
,
D. T.
Michel
,
V.
Tassin
,
C.
Stenz
,
P.-E.
Masson-Laborde
,
C.
Goyon
,
V.
Yahia
, and
C.
Labaune
,
Phys. Plasmas
19
,
012705
(
2012
).
3.
S.
Depierreux
,
C.
Goyon
,
K.
Lewis
,
H.
Bandulet
,
D. T.
Michel
,
G.
Loisel
,
V.
Yahia
,
V.
Tassin
,
C.
Stenz
,
N. G.
Borisenko
,
W.
Nazarov
,
J.
Limpouch
,
P. E.
Masson Laborde
,
P.
Loiseau
,
M.
Casanova
,
P.
Nicolaï
,
S.
Hüller
,
D.
Pesme
,
C.
Riconda
,
V. T.
Tikhonchuk
, and
C.
Labaune
,
Plasma Phys. Controlled Fusion
53
,
124034
(
2011
).
4.
L. J.
Perkins
,
R.
Betti
,
K. N.
LaFortune
, and
W. H.
Williams
,
Phys. Rev. Lett.
103
,
045004
(
2009
).
5.
S.
Atzeni
,
A.
Marocchino
,
A.
Schiavi
, and
G.
Schurtz
,
New J. Phys.
15
,
045004
(
2013
).
6.
K. S.
Anderson
,
R.
Betti
,
P. W.
McKenty
,
T. J. B.
Collins
,
M.
Hohenberger
,
W.
Theobald
,
R. S.
Craxton
,
J. A.
Delettrez
,
M.
Lafon
,
J. A.
Marozas
,
R.
Nora
,
S.
Skupsky
, and
A.
Shvydky
,
Phys. Plasmas
20
,
056312
(
2013
).
7.
X.
Ribeyre
,
V. T.
Tikhonchuk
,
J.
Breil
,
M.
Lafon
, and
E.
Le Bel
,
Phys. Plasmas
18
,
102702
(
2011
).
8.
S.
Depierreux
,
C.
Labaune
,
D. T.
Michel
,
C.
Stenz
,
P.
Nicolaï
,
M.
Grech
,
G.
Riazuelo
,
S.
Weber
,
C.
Riconda
,
V. T.
Tikhonchuk
,
P.
Loiseau
,
N. G.
Borisenko
,
W.
Nazarov
,
S.
Hüller
,
D.
Pesme
,
M.
Casanova
,
J.
Limpouch
,
C.
Meyer
,
P.
Di-Nicola
,
R.
Wrobel
,
E.
Alozy
,
P.
Romary
,
G.
Thiell
,
G.
Soullié
,
C.
Reverdin
, and
B.
Villette
,
Phys. Rev. Lett.
102
,
195005
(
2009
).
9.
W.
Kruer
,
The Physics of Laser Plasma Interactions
(
Addison Wesley
,
New York
,
1988
).
10.
S.
Depierreux
,
D. T.
Michel
,
V.
Tassin
,
P.
Loiseau
,
C.
Stenz
, and
C.
Labaune
,
Phys. Rev. Lett.
103
,
115001
(
2009
).
11.
C.
Riconda
,
S.
Weber
,
V. T.
Tikhonchuk
, and
A.
Héron
,
Phys. Plasmas
18
,
092701
(
2011
).
12.
S.
Weber
,
C.
Riconda
,
O.
Klimo
,
A.
Héron
, and
V. T.
Tikhonchuk
,
Phys. Rev. E.
85
,
016403
(
2012
).
13.
C.
Riconda
,
S.
Weber
,
V. T.
Tikhonchuk
,
J.-C.
Adam
, and
A.
Héron
,
Phys. Plasmas
13
,
083103
(
2006
).
14.
S.
Weber
,
C.
Riconda
, and
V. T.
Tikhonchuk
,
Phys. Rev. Lett.
94
,
055005
(
2005
).
15.
S. D.
Baton
,
M.
Koenig
,
E.
Brambrink
,
H. P.
Schlenvoigt
,
C.
Rousseaux
,
G.
Debras
,
S.
Laffite
,
P.
Loiseau
,
F.
Philippe
,
X.
Ribeyre
, and
G.
Schurtz
,
Phys. Rev. Lett.
108
,
195002
(
2012
).
16.
W.
Theobald
,
R.
Nora
,
M.
Lafon
,
A.
Casner
,
X.
Ribeyre
,
K. S.
Anderson
,
R.
Betti
,
J. A.
Delettrez
,
J. A.
Frenje
,
V.
Yu. Glebov
,
O. V.
Gotchev
,
M.
Hohenberger
,
S. X.
Hu
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
T. C.
Sangster
,
G.
Schurtz
,
W.
Seka
,
V. A.
Smalyuk
,
C.
Stoeckl
, and
B.
Yaakobi
,
Phys. Plasmas
19
,
102706
(
2012
).
17.
D.
Duston
,
R. W.
Clark
, and
J.
Davis
,
Phys. Rev. A
31
,
3220
(
1985
).
18.
K.
Eidmann
and
T.
Kishimoto
,
Appl. Phys. Lett.
49
,
377
(
1986
).
19.
R.
Popil
,
P. D.
Gupta
,
R.
Fedosejevs
, and
A. A.
Offenberger
,
Phys. Rev. A
35
,
3874
(
1987
).
20.
W. L.
Shang
,
T.
Zhu
,
T. M.
Song
,
W. H.
Zhang
,
Y.
Zhao
,
G.
Xiong
,
J. Y.
Zhang
, and
J. M.
Yang
,
Phys. Plasmas.
18
,
042705
(
2011
).
21.
P.
Celliers
,
L. B.
Da. Silva
,
C. B.
Dane
,
S.
Mrowka
,
M.
Norton
,
J.
Harder
,
L.
Hackel
,
D. L.
Matthews
,
H.
Fiedorowicz
,
A.
Bartnik
,
J. R.
Maldonado
, and
J. A.
Abate
,
J. Appl. Phys.
79
,
8258
(
1996
).
22.
T.
Higashiguchi
,
K.
Kawasaki
,
W.
Sasaki
, and
S.
Kubodera
,
Appl. Phys. Lett.
88
,
161502
(
2006
).
23.
R. E.
Olson
,
L. J.
Suter
,
J. L.
Kline
,
D. A.
Callahan
,
M. D.
Rosen
,
S. N.
Dixit
,
O. L.
Landen
,
N. B.
Meezan
,
J. D.
Moody
,
C. A.
Thomas
,
A.
Warrick
,
K.
Widmann
,
E. A.
Williams
, and
S. H.
Glenzer
,
Phys. Plasmas
19
,
053301
(
2012
).
24.
S. H.
Glenzer
,
B. J.
MacGowan
,
N. B.
Meezan
 et al,
Phys. Rev. Lett.
106
,
085004
(
2011
).
25.
J. D.
Lindl
,
Phys. Plasmas
2
,
3933
(
1995
).
26.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion
(
Clarendon
,
Oxford
,
2004
).
27.
R.
Ramis
,
R.
Schmalz
, and
J.
Meyer-ter-Vehn
,
Comput. Phys. Commun.
49
,
475
(
1988
).
28.
W. L.
Shang
,
J. M.
Yang
, and
Y. S.
Dong
,
Appl. Phys. Lett.
102
,
094105
(
2013
).
29.
S.
Li
,
High Temperature Radiation and Quantum Radiation Physics
(
National Defence Industry Press
,
1992
).
You do not currently have access to this content.