Benchmarking is generally accepted as an important element in demonstrating the correctness of computer simulations. In the modern sense, a benchmark is a computer simulation result that has evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and numerical parameters. We have simulated the benchmark conditions using five independently developed particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable, within bounds of uncertainty that we define. We, therefore, claim that the results of these simulations represent strong benchmarks, which can be used as a basis for evaluating the accuracy of other codes. These other codes could include other approaches than particle-in-cell simulations, where benchmarking could examine not just implementation accuracy and efficiency, but also the fidelity of different physical models, such as moment or hybrid models. We discuss an example of this kind in the Appendix. Of course, the methodology that we have developed can also be readily extended to a suite of benchmarks with coverage of a wider range of physical and chemical phenomena.

1.
See supplementary material at http://dx.doi.org/10.1063/1.4775084 for tabulations of electron-neutral scattering cross sections, ion-neutral scattering cross sections, benchmark calculation data, and numerically refined benchmark data.
2.
L.
Hatton
and
A.
Roberts
,
IEEE Trans. Software Eng.
20
,
785
797
(
1994
).
3.
L.
Hatton
,
IEEE Comput. Sci. Eng.
4
,
27
38
(
1997
).
4.
W. L.
Oberkampf
and
T. G.
Trucano
,
Prog. Aerosp. Sci.
38
,
209
272
(
2002
).
5.
W. L.
Oberkampf
and
T. G.
Trucano
,
Nucl. Eng. Des.
238
,
716
(
2008
).
6.
C. J.
Roy
and
W. L.
Oberkampf
,
Comput. Methods Appl. Mech. Eng.
200
,
2131
(
2011
).
7.
P. J.
Roache
,
K. N.
Ghia
, and
F. M.
White
,
J. Fluids Eng.
108
,
2
(
1986
).
8.
C. J.
Freitas
,
J. Fluids Eng.
115
,
339
(
1993
).
9.
J. H.
Kim
,
T. W.
Simon
, and
R.
Viskanta
,
J. Heat Transfer
115
,
5
(
1993
).
10.
J. E.
Lawler
and
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
32
,
3188
(
1999
).
11.
I. D.
Reid
,
Aust. J. Phys.
32
,
231
254
(
1979
).
12.
L. C.
Pitchford
,
S. V.
ONeil
, and
J. R.
Rumble
,
Phys. Rev. A
23
,
294
(
1981
).
13.
J. P.
Verboncoeur
,
G. J.
Parker
,
B. M.
Penetrante
, and
W. L.
Morgan
,
J. Appl. Phys.
80
,
1299
(
1996
).
14.
Z. M.
Raspopovic
,
S.
Sakadzic
,
S. A.
Bzenic
, and
Z. L.
Petrovic
,
IEEE Trans. Plasma Sci.
27
,
1241
1248
(
1999
).
15.
N. R.
Pinhao
,
Z.
Donkó
,
D.
Loffhagen
,
M. J.
Pinheiro
, and
E. A.
Richley
,
Plasma Sources Sci. Technol.
13
,
719
(
2004
).
16.
Z. L.
Petrović
,
S.
Dujko
,
D.
Marić
,
G.
Malović
,
ž.
Nikitović
,
O.
Šašić
,
J.
Jovanović
,
V.
Stojanović
, and
M.
Radmilović-Rađenović
,
J. Phys. D: Appl. Phys.
42
,
194002
(
2009
).
17.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
Plasma Sources Sci. Technol.
1
,
36
(
1992
).
18.
M.
Surendra
,
Plasma Sources Sci. Technol.
4
,
56
(
1995
).
19.
S. F.
Biagi
,
Cross Section Compilation, version 7.1
,
2004
, see http://www.lxcat.net.
20.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
21.
A. V.
Phelps
,
Compilation of Atomic and Molecular Data
,
2005
, see http://jila.colorado.edu/{~}avp/.
22.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
,
Rev. Mod. Phys.
80
,
633
(
2008
).
23.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill International Book Co.
,
1981
).
24.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics Via Computer Simulation
(
Adam Hilger
,
1991
).
25.
C. K.
Birdsall
,
IEEE Trans. Plasma Science
19
,
65
(
1991
).
26.
M. M.
Turner
,
Phys. Plasmas
13
,
033506
(
2006
).
27.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
198
(
1995
).
28.
Z.
Donkó
,
Plasma Sources Sci. Technol.
20
,
024001
(
2011
).
29.
J.
Adam
,
A.
Gourdin Serveniere
, and
A.
Langdon
,
J. Comput. Phys.
47
,
229
(
1982
).
30.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Dover
,
1965
).
31.
V.
Vahedi
,
G.
DiPeso
,
C. K.
Birdsall
,
M. A.
Lieberman
, and
T. D.
Rognlien
,
Plasma Sources Sci. Technol.
2
,
261
(
1993
).
32.
V. A.
Godyak
and
R. B.
Piejak
,
Phys. Rev. Lett.
65
,
996
999
(
1990
).
33.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
Phys. Rev. Lett.
68
,
40
43
(
1992
).
34.
M. M.
Turner
and
M. B.
Hopkins
,
Phys. Rev. Lett.
69
,
3511
3514
(
1992
).
35.
W. N. G.
Hitchon
,
G. J.
Parker
, and
J. E.
Lawler
,
IEEE Trans, Plasma Sci.
21
,
228
238
(
1993
).
36.
J.
Verboncoeur
,
M.
Alves
,
V.
Vahedi
, and
C.
Birdsall
,
J. Comput. Phys.
104
,
321
(
1993
).
37.
comsol
,
Multiphysics Modeling and Simulation Software
,
2012
, see http://www.comsol.com/.
38.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
39.
P. L.
Patterson
,
Phys. Rev. A
2
,
1154
(
1970
).

Supplementary Material

You do not currently have access to this content.