Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

1.
Y. C. F.
Thio
,
C. E.
Knapp
,
R. C.
Kirkpatrick
,
R. E.
Siemon
, and
P.
Turchi
, “
A physics exploratory experiment on plasma liner formation
,”
J. Fusion Energy
20
,
1
(
2001
).
2.
Y. C. F.
Thio
,
E.
Panarella
,
R. C.
Kirckpatrick
,
C. E.
Knapp
, and
F.
Wysocki
, “
Magnetized target fusion in spheroidal geometry with standoff drivers
,” in
Proceedings of the 2nd Symposium on Current Trends in International Fusion Research
, edited by
E.
Panarella
(
NRC of Canada Research
,
Ottawa
,
1999
), pp.
113
134
.
3.
J.
Loverich
and
A.
Hakim
Two-dimensional modeling of ideal merging plasma jets
,”
J. Fusion Energy
29
,
532
539
(
2010
).
4.
S. A.
Galkin
,
I. N.
Bogatu
, and
J. S.
Kim
, “
High density high velocity plasma jet interaction
,” in
Proceedings of the 16th IEEE International Pulsed Power Conference
(
2007
), pp.
947
950
.
5.
S. C.
Hsu
,
T. J.
Awe
,
S.
Brockington
,
A.
Case
,
J. T.
Cassibry
,
G.
Kagan
,
S. J.
Messer
,
M.
Stanic
,
X.
Tang
,
D. R.
Welch
, and
F. D.
Witherspoon
, “
Spherically imploding plasma liners as a standoff driver for magneto-inertial fusion
,”
IEEE Trans. Plasma Sci.
40
(
5
),
1287
(
2012
).
6.
J. H.
Degnan
,
W. L.
Baker
,
M.
Cowan
, Jr
,
J. D.
Graham
,
J. L.
Holmes
,
E. A.
Lopez
,
D. W.
Price
,
D.
Ralph
, and
N. F.
Roderick
, “
Operation of a cylindrical array of plasma guns
,”
Fusion Technol.
35
,
354
360
(
1999
).
7.
F. D.
Witherspoon
 et al, “
A contoured gap coaxial plasma gun with injected armature
,”
Rev. Sci. Instrum.
80
,
083506
(
2009
).
8.
F. D.
Witherspoon
,
R.
Bomgardner
,
S.
Brockington
,
A.
Case
,
S.
Messer
,
D.
Van Doren
,
L.
Wu
, and
R.
Elton
, “
Minirailgun plasma jet accelerators for HEDLP and fusion applications
,”
Rev. Sci. Instrum.
(submitted).
9.
H.-K.
Chung
,
M. H.
Chen
,
W. L.
Morgan
,
Y.
Ralchenko
, and
R. W.
Lee
,
High Energy Density Phys.
1
,
3
12
(
2005
).
10.
E. C.
Merritt
,
A. G.
Lynn
,
M. A.
Gilmore
,
C.
Thoma
,
J.
Loverich
, and
S.
Hsu
, “
Multi-chord fiber-coupled interferometry of supersonic plasma jets and comparisons with synthetic data
,”
Rev. Sci. Instrum.
83
,
10D523
(
2012
).
11.
S.
Messer
,
A.
Case
,
L.
Wu
,
S.
Brockington
, and
F. D.
Witherspoon
, “Nonlinear compressions in merging plasma jets” (unpublished).
12.
L.
Wu
,
M.
Phillips
, and
F. D.
Witherspoon
, “
Numerical simulation of merging plasma jets using high-Z gases
,”
IEEE Trans. Plasma Sci.
(submitted).
You do not currently have access to this content.