An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.

1.
P.
Goldreich
and
S.
Sridhar
,
Astrophys. J.
438
,
763
(
1995
).
2.
G.
Zank
and
W. H.
Matthaeus
,
Phys. Fluids A
5
,
257
(
1993
).
3.
A.
Lazarian
and
J.
Cho
,
Phys. Scr., T
116
,
32
(
2005
).
4.
P.
Dmitruk
and
W.
Matthaeus
,
Phys. Plasmas
13
,
042307
(
2006
).
5.
A.
Beresnyak
,
Phys. Rev. Lett.
106
,
075001
(
2011
).
6.
P.
Diamond
,
S.-I.
Itoh
, and
K.
Itoh
,
Relaxation Dynamics in Laboratory and Astrophysical Plasmas, Vol. 1: Biennial Reviews of the Theory of Magnetized Plasmas
, edited by
P. G.
Patrick
,
H.
Diamond
,
X.
Garbet
, and
Y.
Sarazin
(
World Scientific
,
2009
), pp.
117
150
.
7.
A. V.
Usmanov
,
M. L.
Goldstein
, and
W. H.
Matthaeus
,
Astrophys. J.
754
(
1
),
40
(
2012
).
8.
E.
Lee
,
M. E.
Brachet
,
A.
Pouquet
,
P. D.
Mininni
, and
D.
Rosenberg
,
Phys. Rev. E
81
,
016318
(
2010
).
9.
T. N.
Parashar
,
M. A.
Shay
,
P. A.
Cassak
, and
W. H.
Matthaeus
,
Phys. Plasmas
16
,
032310
(
2009
).
10.
G. G.
Howes
,
J. M.
TenBarge
,
W.
Dorland
,
E.
Quataert
,
A. A.
Schekochihin
,
R.
Numata
, and
T.
Tatsuno
,
Phys. Rev. Lett.
107
,
035004
(
2011
).
11.
O.
Chang
,
S. P.
Gary
, and
J.
Wang
,
Geophys. Res. Lett.
38
,
L22102
, doi: (
2011
).
12.
D.
Verscharen
,
E.
Marsch
,
U.
Motschmann
, and
J.
Muller
,
Phys. Plasmas
19
,
022305
(
2012
).
13.
S.
Servidio
,
F.
Valentini
,
F.
Califano
, and
P.
Veltri
,
Phys. Rev. Lett.
108
,
045001
(
2012
).
14.
S.
Boldyrev
and
J. C.
Perez
, “
Spectrum of kinetic-Alfven turbulence
,”
Astrophys. J. Lett.
758
,
L44
(
2012
).
15.
L.
Rudakov
,
M.
Mithaiwala
,
G.
Ganguli
, and
C.
Crabtree
,
Phys. Plasmas
18
,
012307
(
2011
).
16.
L.
Rudakov
,
C.
Crabtree
,
G.
Ganguli
, and
M.
Mithaiwala
,
Phys. Plasmas
19
,
042704
(
2012
).
17.
R.
Numata
,
G. G.
Howes
,
T.
Tatsuno
,
M.
Barnes
, and
W.
Dorland
,
J. Comput. Phys.
229
(
24
),
9347
(
2010
).
18.
M.
Wan
,
W.
Matthaeus
,
H.
Karimabadi
,
V.
Roytershteyn
,
M. A.
Shay
,
P.
Wu
,
W.
Daughton
,
B.
Loring
, and
S. C.
Chapman
,
Phys. Rev. Lett.
109
,
195001
(
2012
).
19.
K. J.
Bowers
,
B. J.
Albright
,
L.
Yin
,
B.
Bergen
, and
T. J. T.
Kwan
,
Phys. Plasmas
15
,
7
(
2008
).
20.
T. A.
Yousef
,
T.
Heinemann
,
A. A.
Schekochihin
,
N.
Kleeorin
,
I.
Rogachevskii
,
A. B.
Iskakov
,
S. C.
Cowley
, and
J. C.
McWilliams
,
Phys. Rev. Lett.
100
,
184501
(
2008
).
21.
K.
Julien
and
E.
Knobloch
,
Philos. Trans. R. Soc. London
368
,
1607
(
2010
).
22.
F.
Sahraoui
,
M. L.
Goldstein
,
P.
Robert
, and
Y. V.
Khotyaintsev
,
Phys. Rev. Lett.
102
,
231102
(
2009
).
23.
O.
Alexandrova
,
V.
Carbone
,
P.
Veltri
, and
L.
Sorriso-Valvo
,
Astrophys. J.
674
,
1153
(
2008
).
24.
B. A.
Maruca
,
J. C.
Kasper
, and
S. D.
Bale
,
Phys. Rev. Lett.
107
,
201101
(
2011
).
25.
N. P.
Korzhov
,
V. V.
Mishin
, and
V. M.
Tomozov
,
Planet. Space Sci.
32
,
1169
(
1984
).
26.
D. A.
Roberts
,
M. L.
Goldstein
,
W. H.
Matthaeus
, and
S.
Ghosh
,
J. Geophys. Res., [Space Phys.]
97
,
17115
, doi: (
1992
).
27.
G. P.
Zank
,
W. H.
Matthaeus
, and
C. W.
Smith
,
J. Geophys. Res., [Space Phys.]
101
,
17093
, doi: (
1996
).
28.
B.
Breech
,
W. H.
Matthaeus
,
J.
Minnie
,
J. W.
Bieber
,
S.
Oughton
,
C. W.
Smith
, and
P. A.
Isenberg
,
J. Geophys. Res., [Space Phys.]
113
,
A08105
, doi: (
2008
).
29.
J. E.
Borovsky
,
J. Geophys. Res.
117
,
A06224
, doi: (
2012
).
30.
M. J.
Lighthill
,
Proc. R. Soc. London
211
,
564
(
1952
).
31.
A.
Miura
and
P. L.
Pritchett
,
J. Geophys. Res., [Space Phys.]
87
,
7431
, doi: (
1982
).
32.
K.
Nykyri
and
A.
Otto
,
Geophys. Res. Lett.
28
,
3565
, doi: (
2001
).
33.
T. K. M.
Nakamura
,
M.
Fujimoto
, and
A.
Otto
,
J. Geophys. Res., [Space Phys.]
113
,
A09204
, doi: (
2008
).
34.
M.
Faganello
,
F.
Califano
, and
F.
Pegoraro
,
Phys. Rev. Lett.
101
,
105001
(
2008
).
35.
P.
Dmitruk
,
W.
Matthaeus
, and
N.
Seenu
,
Astrophys. J.
617
,
667
(
2004
).
36.
A.
Monin
and
A.
Yaglom
,
Statistical Fluid Mechanics, CTR Monograph
(
MIT
,
1971
and 1975), Vol. 1 and 2, no. v. 1, pt. 2.
37.
S.
Bourouaine
,
O.
Alexandrova
,
E.
Marsch
, and
M.
Maksimovic
,
Astrophys. J.
749
,
102
(
2012
).
38.
F.
Anselmet
,
Y.
Gagne
,
E. J.
Hopfinger
, and
R. A.
Antonia
,
J. Fluid Mech.
140
,
63
(
1984
).
39.
A. N.
Kolmogorov
,
J. Fluid Mech.
13
,
82
(
1962
).
40.
A. M.
Obukhov
,
J. Geophys. Res.
67
,
3011
, doi: (
1962
).
41.
K. R.
Sreenivasan
and
R. A.
Antonia
,
Annu. Rev. Fluid Mech.
29
,
435
(
1997
).
42.
S.
Servidio
,
M.
Wan
,
W.
Matthaeus
, and
V.
Carbone
,
Phys. Fluids
22
,
125107
(
2010
).
43.
B.
Cabral
and
L.
Leedom
, in
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques
, ACM New York, NY,
1993
, pp.
263
270
.
44.
J.
Egedal
,
W.
Daughton
, and
A.
Le
,
Nat. Phys.
8
,
321
(
2012
).
45.
E.
Marsch
,
Living Rev. Solar Phys.
3
,
1
(
2006
).
46.
B. J.
Vasquez
,
C. W.
Smith
,
K.
Hamilton
,
B. T.
MacBride
, and
R. J.
Leamon
,
J. Geophys. Res.
112
,
A07101
, doi: (
2007
).
47.
K. T.
Osman
,
W. H.
Matthaeus
,
A.
Greco
, and
S.
Servidio
,
Astrophys. J. Lett.
727
,
L11
(
2011
).
48.
V.
Roytershteyn
,
W.
Daughton
,
H.
Karimabadi
, and
F. S.
Mozer
,
Phys. Rev. Lett.
108
,
185001
(
2012
).
49.
D.
Sundkvist
,
A.
Retino
,
A.
Vaivads
, and
S. D.
Bale
,
Phys. Rev. Lett.
99
,
025004
(
2007
).
50.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
,
Astrophys. J.
182
,
310
(
2009
).
You do not currently have access to this content.