A cylindrical model with finite beta having an external resonant ideal magnetohydrodynamic instability has been constructed. This resonant mode has a mode rational surface, where the safety factor q equals m/n, within the plasma. In this model, the perturbed radial magnetic field for the ideal mode is nonzero between the mode rational surface and the wall, even though it must vanish at the mode rational surface. This property of the mode is in common with the toroidal external kink. Results are presented showing that in the parameter range for which this ideal mode is stable with a conducting wall but unstable with the wall at infinity, a resistive wall mode persists. However, in the presence of plasma resistivity in a resistive layer about the mode rational surface, this resistive wall mode can be stabilized by a plasma rotation frequency of order a nominal resistive instability growth rate. Furthermore, the stabilization occurs in a large gap in wall position or beta. It is also shown that for the ideal resonant mode, as well as resistive plasma modes and nonresonant ideal plasma modes, there is a maximum value of plasma rotation above which there is no stability gap. Discussions are presented suggesting that these properties may hold for the toroidal external kink.

1.
F.
Troyon
,
R.
Gruber
,
H.
Saurenmann
,
S.
Semenzato
, and
S.
Succi
,
Plasma Phys. Controlled Fusion
26
,
209
(
1984
).
2.
D.
Pfirsch
and
H.
Tasso
,
Nucl. Fusion
11
,
259
(
1971
).
3.
T. H.
Jensen
and
M. S.
Chu
,
J. Plasma Phys.
30
,
57
(
1983
).
4.
C. G.
Gimblett
,
Nucl. Fusion
26
,
617
(
1986
).
5.
L. E.
Zakharov
and
S. V.
Putvinskii
,
Sov. J. Plasma Phys.
13
,
68
(
1987
).
6.
J. P. Freidberg, Ideal Magnetohydrodynamics (Plenum, New York, 1987), p. 307ff.
7.
A.
Bondeson
and
D.
Ward
,
Phys. Rev. Lett.
72
,
2709
(
1994
).
8.
R.
Betti
and
J. P.
Freidberg
,
Phys. Rev. Lett.
74
,
2949
(
1995
).
9.
R. Fitzpatrick and A. Aydemir, “Stabilization of the resistive shell mode in tokamaks,” submitted to Nucl. Fusion (1995).
10.
R. A. Gerwin (private communication, 1995).
11.
M. S.
Chu
,
J. M.
Greene
,
T. H.
Jensen
,
R. L.
Miller
,
A.
Bondeson
,
R. W.
Johnson
, and
M. E.
Mauel
,
Phys. Plasmas
2
,
2236
(
1995
).
12.
J. M.
Finn
,
Phys. Plasmas
2
,
198
(
1995
).
13.
N. Pomphrey, S. Jardin, J. Bialeck, M. S. Chance, D. D’Ippolito, J. M. Finn, R. Fitzpatrick, J. Johnson, C. Kessel, J. Manickam, D. Monticello, J. Myra, M. Ono, W. Park, A. Reiman, G. Rewoldt, W. Tang, E. Valeo, L. Zakharov, “MHD regimes for steady state or long pulse tokamak operation,” in Plasma Physics and Controlled Nuclear Fusion Research 1994, Proceedings of the 15th International Conference, Seville (International Atomic Energy Agency, Vienna, in press).
14.
L. C.
Bernard
,
F. J.
Helton
, and
R. W.
Moore
,
Comput. Phys. Commun.
24
,
377
(
1981
).
15.
T. S.
Taylor
,
V.
Chan
,
S. C.
Chiu
,
Y. B.
Kim
,
L. L.
Lao
,
Y. R.
Lin-Liu
,
H. E. St.
John
, and
A. D.
Turnbull
,
Bull. Am. Phys. Soc.
38
,
1936
(
1993
).
16.
J. L.
Luxon
and
L. G.
Davis
,
Fusion Technol.
8
,
441
(
1985
).
17.
H. R.
Strauss
,
Phys. Fluids
19
,
134
(
1976
);
H. R.
Strauss
,
20
,
1354
(
1977
).,
Phys. Fluids
18.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
19.
B.
Coppi
,
J. M.
Greene
and
J. L.
Johnson
,
Nucl. Fusion
6
,
101
(
1966
).
20.
A. H.
Glasser
,
J. M.
Greene
, and
J. L.
Johnson
,
Phys. Fluids
18
,
875
(
1975
).
21.
J. M. Finn, “New parallel velocity shear instability,” to appear in Phys. Plasmas (1995).
22.
E. A.
Frieman
and
M.
Rotenberg
,
Rev. Mod. Phys.
32
,
898
(
1960
).
23.
G. W.
Hammett
and
F. W.
Perkins
,
Phys. Rev. Lett.
64
,
3019
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.