Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

1.
V.
Kim
,
J. Propul. Power
14
,
5
(
1998
).
2.
S. R.
Oleson
, in
Proceedings of the 25th International Electric Propulsion Conference
,
Cleveland, OH
(
Electric Rocket Propulsion Society, Cleveland
,
1997
), IEPC-97-148.
3.
A. I.
Bugrova
, personal communication (
2002
).
4.
A. I.
Morozov
,
A. I.
Bugrova
,
A. D.
Desiatskov
,
V. K.
Karchevnikov
,
M.
Prioul
, and
L.
Jolivet
, in
Proceedings of the 28th International Electric Propulsion Conference
, Toulouse, France (
Electric Rocket Propulsion Society
,
Cleveland
,
2003
), IEPC 03-290.
5.
A. I.
Bugrova
,
A. V.
Desyatskov
,
A. I.
Morozov
,
V. K.
Kharchevnikov
, and
M.
Priol
, in
Proceedings of the 29th International Electric Propulsion Conference, Princeton University
(
Electric Rocket Propulsion Society
,
Cleveland
,
2005
), IEPC-05-146.
6.
C.
Boniface
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
J. P.
Boeuf
, and
M.
Prioul
,
IEEE Trans. Plasma Sci.
33
,
522
(
2005
).
7.
L.
Garrigues
,
C.
Boniface
,
G. J. M.
Hagelaar
, and
J. P.
Boeuf
,
Phys. Plasma
15
,
113502
(
2008
).
8.
D.
Yu
,
M.
Song
,
H.
Liu
,
Y. J.
Ding
, and
H.
Li
,
Phys. Plasmas
19
,
033503
(
2012
).
9.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
,
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
10.
L.
Garrigues
,
G. J. M.
Hagelaar
,
J.
Bareilles
,
C.
Boniface
, and
J. P.
Boeuf
,
Phys. Plasmas
10
,
4886
(
2003
).
11.
J. A.
Linnell
and
A. D.
Gallimore
,
Phys. Plasmas
13
,
103504
(
2006
).
12.
F. F.
Chen
,
J. D.
Evans
, and
D.
Arnush
,
Phys. Plasmas
9
,
1449
(
2002
).
13.
A. I.
Morozov
,
A. I.
Bugrova
,
A. V.
Desyatskov
,
Yu. A.
Ermakov
,
M. V.
Kozintseva
 et al.,
Plasma Phys. Rep.
23
,
587
(
1997
).
14.
S. K.
Doss
and
K.
Miller
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
16
,
837
(
1979
).
15.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
16.
G. J. M.
Hagelaar
,
Plasma Sources Sci. Technol.
16
,
S57
(
2007
).
17.
J. J.
Szabo
, Jr.
, Ph.D. dissertation,
Massachusetts Institute of Technology
,
2001
.
18.
D. C.
Meeker
,
Finite element method magnetics version 4.2 user’s manual
,
2008
.
19.
E.
Ahedo
,
Phys. Plasma
18
,
103506
(2011).
20.
A.
Fruchtman
,
G.
Makrinich
, and
J.
Ashkenazy
,
Plasma Sources Sci. Technol.
14
152
(
2005
).
21.
J.
Perez-Luna
,
G. J. M.
Hagelaar
,
L.
Garrigues
, and
J. P.
Boeuf
,
Phys. Plasma
14
,
113502
(
2007
).
22.
V. V.
Zhurin
,
H. R.
Kaufmann
, and
R. S.
Robinson
,
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
23.
H.
Liu
,
B.
Wu
,
D.
Yu
,
Y.
Cao
, and
P.
Duan
,
J. Phys. D
43
,
165202
(
2010
).
24.
C.
Boniface
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
J. P.
Boeuf
, and
M.
Prioul
, in
Proceedings of the 29th International Electric Propulsion Conference
, Princeton University (
Electric Rocket Propulsion Society
,
Cleveland
,
2005
), IEPC-05-137.
You do not currently have access to this content.