Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,vx) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

1.
I. G.
Brown
,
The Physics and Technology of Ion Sources
(
Wiley-VCH
,
Weinheim
,
2004
).
2.
J.
Fuchs
 et al, “
Laser-driven proton scaling laws and new paths toward energy increase
,”
Nat. Phys.
2
,
48
54
(
2006
).
3.
R. S.
Hemsworth
and
T.
Inoue
, “
Positive and negative ion sources for magnetic fusion
,”
IEEE Trans. Plasma Sci.
33
,
1799
(
2005
).
4.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
, JPL Space Science and Technology Series (
California Institute of Technology
,
2008
).
5.
C. R.
Koppel
and
D.
Estublier
, “
The SMART-1 Hall effect thruster around the moon: In flight experience
,” IEPC-2005-119,
2005
.
6.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
R20
(
1999
).
7.
K.
Dannenmayer
and
S.
Mazouffre
, “
Elementary scaling relations for Hall effect thrusters
,”
J. Propul. Power
27
,
236
(
2011
).
8.
J. A.
Linnell
, “
An evaluation of krypton propellant in Hall thrusters
,” Ph.D. thesis (
University of Michigan
,
2007
).
9.
B. E.
Beal
,
A. D.
Gallimore
, and
W. A.
Hargus
, “
Plasma properties downstream of a low-power Hall thruster
,”
Phys. Plasmas
12
,
123503
(
2005
).
10.
A.
Lejeune
,
K.
Dannenmayer
,
G.
Bourgeois
, and
S.
Mazouffre
, “
Impact of the channel width on Hall thruster discharge properties and performances
,” IEPC-2011-019,
2011
.
11.
G.
Bourgeois
,
A.
Lejeune
, and
S.
Mazouffre
, “
Ion velocity evolution with channel width, magnetic topology and propellant in a 200 W Hall thruster
,” IEPC-2011-123,
2011
.
12.
M.
Guyot
,
P.
Renaudin
,
V.
Cagan
, and
C.
Boniface
, patent FR 07 05658 (
2007
).
13.
D.
Gawron
,
S.
Mazouffre
,
N.
Sadeghi
, and
A.
Héron
, “
Influence of magnetic field and discharge voltage on the acceleration layer features in a Hall effect thruster
,”
Plasma Sources Sci. Technol.
17
,
025001
(
2008
).
14.
S.
Mazouffre
,
V.
Kulaev
, and
J.
Pérez Luna
, “
Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion
,”
Plasma Sources Sci. Technol.
18
,
034022
(
2009
).
15.
W.
Hargus
,
G. M.
Azarnia
, and
M. R.
Nakles
, “
Demonstration of Laser-Induced Fluorescence on a krypton Hall effect thruster
,” IEPC-2011-018,
2011
.
16.
N.
Sadeghi
,
N.
Dorval
,
C.
Philippe
 et al, “
Velocity measurements of Xe+ in stationary plasma thruster using LIF
,” AIAA-99-2429,
1999
.
17.
W.
Demtröder
,
Laser Spectroscopy, Basic Concepts and Instrumentation
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1998
).
18.
E.
Pawelec
,
S.
Mazouffre
, and
N.
Sadeghi
, “
Hyperfine structure of some near-infrared Xe I and Xe II lines
,”
Spectrochim. Acta, Part B
66
,
470
(
2011
).
19.
See http://www.nist.gov/pml/data/asd.cfm for NIST atomic spectra database.
20.
K.
Dzierżȩga
,
U.
Griesmann
,
G.
Nave
, and
L.
Bratasz
, “
Absolute transition rates for transitions from 5 p levels in Kr II
,”
Phys. Scr.
63
,
209
(
2001
).
21.
S.
Zielińska
,
L.
Bratasz
, and
K.
Dzierżȩga
, “
Absolute transition rates for transitions from 5p4(3P)6p4P5/20, 4P3/20, 4D7/20 and 2D5/20 levels of Xe II
,”
Phys. Scr.
66
,
454
(
2002
).
22.
F. F.
Chen
,
Plasma Physics and Controlled Fusion, Volume 1: Plasma Physics
, 2nd ed. (
Springer
,
1983
).
23.
See http://www-admis.iaea.org/ALADDIN/collisions.html for IAEA AMDIS ALADDIN database.
24.
J. S.
Miller
,
S. H.
Pullins
,
D. J.
Levandier
 et al, “
Xenon charge exchange cross sections for electrostatic thruster models
,”
J. Appl. Phys.
91
,
984
(
2002
).
25.
B. M.
Smirnov
, “
Atomic structure and the resonant charge exchange process
,”
Phys. Usp.
44
,
221
(
2001
).
26.
V.
Hruby
,
J.
Monheiser
,
B.
Pote
 et al, “
Development of low power Hall thrusters
,”
AIAA-99-3534
,
1999
.
You do not currently have access to this content.