The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a ∼230 kV, ∼110 ns pulse has been investigated. The current density was on the order of ∼123 A/cm2. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvet cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.

1.
Y. E.
Krasik
,
D.
Yarmolich
,
J. Z.
Gleizer
,
V.
Vekselman
,
Y.
Hadas
,
V.
Tz. Gurovich
, and
J.
Felsteiner
,
Phys. Plasmas
16
,
057103
(
2009
).
2.
D.
Sethian
,
M.
Myers
,
I. D.
Smith
,
V.
Carboni
,
J.
Kishi
,
D.
Morton
,
J.
Pearce
,
B.
Bowen
,
L.
Schlitt
,
O.
Barr
, and
W.
Webster
,
IEEE Trans. Plasma Sci.
28
,
1333
(
2000
).
3.
V.
Engelko
,
B.
Yatsenko
,
G.
Mueller
, and
H.
Bluhm
,
Vacuum
62
,
211
(
2000
).
4.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamilogulu
,
High Power Microwaves
, 2nd ed. (
Taylor & Francis
,
New York
,
2007
), Chap. V.
5.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
The Institute of Electrical and Electronics Engineer
,
New York
,
2001
), Chap. IX.
6.
J.
Zhang
,
Z. X.
Jin
,
J. H.
Yang
,
H. H.
Zhong
,
T.
Shu
,
J. D.
Zhang
,
B. L.
Qian
,
C. W.
Yuan
,
Z. Q.
Li
,
Y. W.
Fan
,
S. Y.
Zhou
, and
L. R.
Xu
,
IEEE Trans. Plasma Sci.
39
,
1438
(
2011
).
7.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
H. W.
Yang
,
H.
Zhou
,
C. W.
Yuan
,
W. H.
Zhou
, and
L.
Luo
,
Phys. Plasmas
15
,
083102
(
2008
).
8.
Y. W.
Fan
,
C. W.
Yuan
,
H. H.
Zhong
,
T.
Shu
,
J. D.
Zhang
,
J. H.
Yang
,
H. W.
Yang
,
Y.
Wang
, and
L.
Luo
,
Rev. Sci. Instrum.
79
,
034703
(
2008
).
9.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
C. W.
Yuan
,
T.
Shu
,
H. W.
Yang
,
Y.
Wang
, and
L.
Luo
,
IEEE Trans. Plasma Sci.
39
,
540
(
2011
).
10.
G. A.
Mesyats
,
Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc
(
Nauka
,
Moscow
,
2000
), Chap. XV.
11.
Y. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Phys. Plasmas
8
,
2466
(
2001
).
12.
Y. M.
Saveliev
,
W.
Sibbett
, and
D. M.
Parkes
,
J. Appl. Phys.
94
,
7416
(
2003
).
13.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
V.
Vekselman
,
Y.
Hadas
,
A.
Krokhmal
,
K.
Chirko
,
O.
Peleg
, and
J.
Felsteiner
,
IEEJ Trans. Fundam. Mater.
127
,
697
(
2007
).
14.
R. B.
Miller
,
J. Appl. Phys.
84
,
3880
(
1998
).
15.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
V.
Vekselman
,
Y.
Hadas
, and
J.
Felsteiner
,
IEEE Trans. Plasma Sci.
36
,
768
(
2008
).
16.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
A.
Krokhmal
,
V. T.
Gurovich
,
S.
Efimov
,
J.
Feisteiner
,
V.
Bernshtam
, and
Y. M.
Saveliev
,
J. Appl. Phys.
98
,
093308
(
2005
).
17.
D. A.
Shiffler
,
J. W.
Luginsland
,
R. J.
Umstattd
,
M.
LaCour
,
K.
Golby
,
M. D.
Haworth
,
M.
Ruebush
,
D.
Zagar
,
A.
Gibbbs
, and
T. A.
Spencer
,
IEEE Trans. Plasma Sci.
30
,
1232
(
2002
).
18.
Y. M.
Saveliev
,
W.
Sibbett
, and
D. M.
Parkes
,
J. Appl. Phys.
94
,
5776
(
2003
).
19.
D.
Shiffler
,
M.
Ruebush
,
D.
Zagar
,
M.
LaCour
,
M.
Sena
,
K.
Golby
,
M.
Haworth
, and
R.
Umstattd
,
J. Appl. Phys.
91
,
5599
(
2002
).
20.
Y. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Eur. Phys. J.
D15
,
345
(
2001
).
21.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
,
IEEE Trans. Plasma. Sci.
36
,
718
(
2008
).
22.
D.
Shiffler
,
J.
Heggemeier
,
M.
LaCour
,
K.
Golby
, and
M.
Ruebush
,
Phys. Plasmas
11
,
1680
(
2004
).
23.
D. A.
Shiffler
,
M.
Ruebush
,
M.
LaCour
,
K.
Golby
,
R. J.
Umstattd
,
M. C.
Clark
,
J. W.
Luginsland
,
D.
Zagar
, and
M.
Sena
,
Appl. Phys. Lett.
79
,
2871
(
2001
).
24.
V.
Vekselman
,
J.
Gleizer
,
D.
Yarmolich
,
J.
Felsteiner
,
Y.
Krasik
,
L.
Liu
, and
V.
Bernshtam
,
Appl. Phys. Lett.
93
,
081503
(
2008
).
25.
D. A.
Shiffler
,
M.
Ruebush
,
D.
Zagar
,
D.
Zagar
,
M.
LaCour
,
K.
Golby
,
M. C.
Clark
,
M. D.
Haworth
, and
R.
Umstattd
,
IEEE Trans. Plasma Sci.
30
,
1592
(
2002
).
27.
28.
R. J.
Umstattd
and
J. W.
Luginsland
,
Phys. Rev. Lett.
87
,
145002
(
2001
).
You do not currently have access to this content.