This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

1.
W.
Elenbaas
,
High Pressure Mercury Vapor Discharge
(
North Holland
,
Amsterdam
,
1951
).
2.
R.
Ben Ahmed
,
Phys. Plasmas
12
,
083501
(
2005
).
3.
Paul
 et al.,
LS11-12 Proc. IEEE Trans. Plasma Sci.
34
(
2
),
254
262
(
2006
).
4.
W.
Shyy
and
P. Y.
Chang
,
J. Appl. Phys.
67
,
1712
1719
(
1990
).
5.
P. Y.
Chang
,
W.
Shyy
, and
J. T.
Dakin
,
Int. J. Heat Mass Transfer
33
,
483
493
(
1990
).
6.
W.
Shyy
and
P. Y.
Chang
,
Int. J. Heat Mass Transfer
33
,
495
506
(
1990
).
7.
P. Y.
Chang
and
W.
Shyy
,
Int. J. Heat Mass Transfer
34
,
1857
1864
(
1992
).
8.
P.
Flesch
and
M.
Neiger
, “
Modeling of high-pressure discharge lamps includingelectrodes
,”
IEEE Trans. Plasma Sci.
27
(
1
),
18
19
(
1999
).
9.
E.
Fischer
, “
Modelling of low-power high-pressure gas discharge lamps
,”
Philips J. Res.
42
(
1
),
58
85
(
1987
).
10.
K.
Charrada
and
G.
Zissis
,
Spatio-temporal study of the deviations from thermal equilibrium in a high-pressure mercury plasma working under an ac power supply
,
J. Phys. D: Appl. Phys.
33
968
976
(
2000
).
11.
K.
Charrada
,
G.
Zissis
, and
M.
Aubes
,
Two-temperature, two-dimensional fluid modelling of mercury plasma in high-pressure lamps
,
J. Phys. D: Appl. Phys.
29
,
2432
2438
(
1996
).
12.
K.
Charrada
,
G.
Zissis
, and
M.
Stambouli
, “
A study of the convective flow as a function of external parameters in high-pressure mercury lamps
,”
J. Phys. D: Appl. Phys.
29
,
753
760
(
1996
).
13.
L. M.
Beks
 et al.,
J. Phys. D: Appl. Phys.
41
,
125209
(
2008
).
14.
J.
Wendelstorf
, “
Two-temperature, two-dimensional modeling of cathode-plasma interaction in electric arcs
,” in
Proceedings ICPIG XXIV International Conference on Phenomena in Ionized Gases
, Warsaw 11–16 July
1999
, Vol. 2, pp.
227
228
.
15.
K. C.
Paul
,
T.
Takemura
,
T.
Hiramoto
,
M.
Yoshioka
, and
T.
Igarashi
, “
Three-dimensional modeling of a direct current operated Hg-Ar lamp
,”
IEEE Trans. Plasma Sci.
34
(
2
),
254
262
(
2006
).
16.
M.
Galvez
, “
3-dimensional LTE modelling of HID lamps with electrode-plasma interaction
,”
Light Sources 2004, Proceedings of the 10th International Symposium on the Science and Technology of Light Sources (LS-10), Toulouse
, 18–22 July 2004 (
Institute of Physics Publishing (IoP), Bristol
,
2004
), pp.
459
460
.
17.
H.
Giese
, “
3-D HID lamp model including radiative transfer
,”
Light Sources 2004, Proceedings of the 10th International Symposium on the Science and Technology of Light Sources (LS-10), Toulouse
, 18–22 July 2004 (
Institute of Physics Publishing (IoP), Bristol
,
2004
), pp.
245
246
.
18.
P.
Flesch
,
HID Lamps
(
Universität Karlsruhe
,
2005
).
19.
J. O.
Hirschfelder
,
Molecular Theory of Gases and Liquids
(
John Wiley & Sons
,
New York
,
1954
).
20.
M. W.
Chase
,
JANAF Thermochemical Tables
(
American Chemical Society and The American Institute of Physics for the National Bureau of Standards
,
New York
,
1986
), p.
1320
.
21.
K.
Charrada
,
G.
Zissis
, and
M.
Aubes
,
J. Phys. D: Appl. Phys.
29
,
2432
(
1996
).
22.
M.
Stambouli
,
IEEE Trans. Plasma Sci.
43
,
1
7
(
1995
).
23.
R. J.
Zollweg
,
J. Appl. Phys.
46
,
3828
(
1975
).
24.
R. J.
Zollweg
,
J. Appl. Phys.
49
,
1077
(
1978
).
You do not currently have access to this content.