It was found that the equivalence of the grand canonical and canonical ensembles for the Coulomb systems is possible only when charged particles of different types in calculating the physical quantities are considered as formally “independent” ones, and the quasi-neutrality condition is used in the final stage of calculations. The phase equilibrium condition is obtained and the expression is derived for the isothermal compressibility of matter as a two-component Coulomb system, which corresponds to the known limit relations for static structure factors. On this basis, it is demonstrated that the critical point of matter, considering as the Coulomb system is determined from the condition of vanishing mean square of fluctuations of the total charge per unit volume.

1.
W.-D.
Kraeft
,
D.
Kremp
,
W.
Ebeling
, and
G.
Ropke
,
Quantum Statistics of Charged Particle Systems
(
Plenum
,
New York
,
1986
).
2.
V.
Fortov
,
I.
Yakubov
, and
A.
Khrapak
,
Physics of Strongly Coupled Plasma
(
Clarendon
,
Oxford
,
2006
).
3.
S.
Ichimaru
,
Rev. Mod. Phys.
54
,
1017
(
1982
).
4.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part 1
(
Pergamon
,
Oxford
,
1980
).
5.
F. J.
Dyson
and
A.
Lenard
,
J. Math. Phys.
8
,
423
(
1967
).
6.
A.
Lenard
and
F. J.
Dyson
,
J. Math. Phys.
9
,
698
(
1968
).
7.
J. L.
Lebowitz
and
E. H.
Lieb
,
Phys. Rev. Lett.
22
,
631
(
1969
).
8.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic
,
London
,
1986
).
9.
A. A.
Abrikosov
,
L. P.
Gor’kov
, and
I. E.
Dzjaloshinskii
,
Quantum Field Theoretical Methods in Statistical Physics
(
Pergamon
,
Oxford/New York
,
1965
).
10.
L. P.
Kadanoff
and
G.
Baym
,
Quantum Statistical Mechanics. Green’s Function Methods in Equilibrium and Nonequilibrium Problems
(
Benjamin
,
New York
,
1962
).
11.
N. N.
Bogolyubov
and
N. N.
Bogolyubov
, Jr.
,
Introduction to Quantum Statistical Mechanics
(
World Scientific
,
Singapore
,
1982
).
12.
A. A.
Vedenov
and
A. I.
Larkin
,
Zh. Exper. Teor. Fiz.
36
,
1133
(
1959
).
13.
W.
Ebeling
,
W.-D.
Kraeft
, and
D.
Kremp
,
Theory of Bound States and Ionization Equilibrium in Plasmas and Solids
(
Akademie-Verlag
,
Berlin
,
1976
).
14.
V. B.
Bobrov
,
N. I.
Klyuchnikov
, and
S. A.
Trigger
,
Theor. Math. Phys.
89
,
1198
(
1991
);
V. B.
Bobrov
,
N. I.
Klyuchnikov
, and
S. A.
Trigger
,
Physica
A181
,
156
(
1992
).
15.
V. B.
Bobrov
,
S. A.
Trigger
, and
S. N.
Skovorod’ko
,
Europhys.Lett.
92
,
13001
(
2010
).
16.
V. B.
Bobrov
and
S. A.
Trigger
,
J. Phys. A: Math.Theor.
43
,
365002
(
2010
).
17.
D. N.
Zubarev
,
Nonequilibrium Statistical Thermodynamics
(
Consultants Bureau
,
New York
,
1974
).
18.
Ph. A.
Martin
and
T.
Yalcin
,
J. Stat. Phys.
22
,
435
(
1980
).
19.
J. L.
Lebowitz
,
Phys. Rev. A
27
,
1491
(
1983
).
20.
Ph. A.
Martin
,
Rev. Mod. Phys.
60
,
1075
(
1988
).
21.
J.
Barre
,
D.
Mukamel
, and
S.
Ruffo
,
Phys. Rev. Lett.
87
,
030601
(
2001
).
22.
A.
Campa
,
T.
Dauxois
, and
S.
Ruffo
,
Phys. Rep.
480
,
57
(
2009
).
23.
R.
Balescu
,
Equilibrium and Nonequilibrium Statistical Mechanics
(
Wiley
,
New York
,
1975
).
You do not currently have access to this content.