Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.

1.
R. N.
Dexter
,
D. W.
Kerst
,
T. W.
Lovell
,
S. C.
Prager
, and
J. C.
Sprott
,
Fusion Technol.
19
,
131
(
1991
).
2.
W. X.
Ding
,
D. L.
Brower
,
D.
Craig
,
B. H.
Deng
,
G.
Fiksel
,
V.
Mirnov
,
S. C.
Prager
,
J. S.
Sarff
, and
V.
Svidzinski
,
Phys. Rev. Lett.
93
,
045002
(
2004
).
3.
W. X.
Ding
,
D. L.
Brower
,
B. H.
Deng
,
A. F.
Almagri
,
D.
Craig
,
G.
Fiksel
,
V.
Mirnov
,
S. C.
Prager
,
J. S.
Sarff
, and
V.
Svidzinski
,
Phys. Plasmas
13
,
112306
(
2006
).
4.
A.
Kuritsyn
,
G.
Fiksel
,
A. F.
Almagri
,
D. L.
Brower
,
W. X.
Ding
,
M. C.
Miller
,
V. V.
Mirnov
,
S. C.
Prager
, and
J. S.
Sarff
,
Phys. Plasmas
16
,
055903
(
2009
).
5.
S.
Ortolani
and
D. D.
Schnack
,
Magnetohydrodynamics of Plasma Relaxation
(
World Scientific Pub Co. Inc.
,
1993
).
6.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
Cambridge, England
,
1978
).
7.
R. A.
Nebel
, in
Proceedings of the Physics of Alternative Magnetic Confinement Schemes
, edited by
S.
Ortoloni
and
E.
Sindoni
(
Societa Italiana di Fisica
,
Editrice Compositori, Bologna, Italy
,
1991
), p.
611
.
8.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
9.
B.
Coppi
,
J. M.
Greene
, and
J. L.
Johnson
,
Nucl. Fusion
6
,
101
(
1966
).
10.
V. V.
Mirnov
,
C. C.
Hegna
, and
S. C.
Prager
,
Plasma Phys. Rep.
29
,
566
(
2003
).
11.
D. D.
Schnack
,
E. J.
Caramana
, and
R. A.
Nebel
,
Phys. Fluids
28
,
321
(
1985
).
12.
J. A.
Holmes
,
B. A.
Carreras
,
P. H.
Diamond
, and
V. E.
Lynch
,
Phys. Fluids
31
,
1166
(
1988
).
13.
Y. L.
Ho
and
G. G.
Craddock
,
Phys. Fluids
3
,
030721
(
1991
).
14.
S.
Cappello
and
D.
Biskamp
,
Nucl. Fusion
36
,
571
(
1996
).
15.
P. J.
Catto
and
A. N.
Simakov
,
Phys. Plasmas
11
,
90
(
2004
).
16.
J. R.
King
,
C. R.
Sovinec
, and
V. V.
Mirnov
,
Phys. Plasmas
18
,
042303
(
2011
).
17.
C. R.
Sovinec
,
A. H.
Glasser
,
T. A.
Gianakon
,
D. C.
Barnes
,
R. A.
Nebel
,
S. E.
Kruger
,
S. J.
Plimpton
,
A.
Tarditi
,
M. S.
Chu
, and
NIMROD Team
,
J. Comput. Phys.
195
,
355
(
2004
).
18.
C. R.
Sovinec
and
J. R.
King
,
J. Comput. Phys.
229
,
5803
(
2010
).
19.
P.
Zhu
,
D. D.
Schnack
,
F.
Ebrahimi
,
E. G.
Zweibel
,
M.
Suzuki
,
C. C.
Hegna
, and
C. R.
Sovinec
,
Phys. Rev. Lett.
101
,
085005
(
2008
).
20.
D. C.
Robinson
,
Nucl. Fusion
18
,
939
(
1978
).
21.
B.
Coppi
,
Phys. Fluids
7
,
1501
(
1964
).
22.
V. V.
Mirnov
,
C. C.
Hegna
, and
S. C.
Prager
,
Phys. Plasmas
11
,
4468
(
2004
).
23.
E.
Ahedo
and
J. J.
Ramos
,
Plasma Phys. Controlled Fusion
51
,
055018
(
2009
).
24.
L.
Zakharov
and
B.
Rogers
,
Phys. Fluids B
4
,
3285
(
1992
).
25.
B. N.
Rogers
,
R. E.
Denton
,
J. F.
Drake
, and
M. A.
Shay
,
Phys. Rev. Lett.
87
,
195004
(
2001
).
26.
J. F.
Drake
and
Y. C.
Lee
,
Phys. Fluids
20
,
1341
(
1977
).
27.
V. V.
Mirnov
,
C. C.
Hegna
,
S. C.
Prager
,
C. R.
Sovinec
, and
H.
Tian
, “
Two fluid dynamo and edge-resonant m = 0 tearing instability in reversed field pinch
,” in Proceedings of the 21st IAEA Conference TH/P3-18, Chendu, China, October 2006. Available at: http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/node186.htm#36729
28.
E. C.
Howell
and
C. R.
Sovinec
, “
NIMEQ: MHD equilibrium solver for NIMROD
,” APS Meeting Abstracts (
2008
).
29.
P. H.
Rutherford
,
Phys. Fluids
16
,
1903
(
1973
).
30.
S.
Cappello
,
D.
Bonfiglio
,
D. F.
Escande
,
S. C.
Guo
,
I.
Predebon
,
F.
Sattin
,
M.
Veranda
,
P.
Zanca
,
C.
Angioni
,
L.
Chacon
,
J. Q.
Dong
,
X.
Garbet
, and
S. F.
Liu
,
Nucl. Fusion
51
,
103012
(
2011
).
31.
D. A.
Monticello
and
R. B.
White
,
Phys. Fluids
23
,
366
(
1980
).
32.
B. D.
Scott
,
A. B.
Hassam
, and
J. F.
Drake
,
Phys. Fluids
28
,
275
(
1985
).
33.
L.
Turner
,
IEEE Trans. Plasma Sci.
14
,
849
(
1986
).
34.
L. C.
Steinhauer
and
A.
Ishida
,
Phys. Rev. Lett.
79
,
3423
(
1997
).
35.
C. C.
Hegna
,
Phys. Plasmas
5
,
2257
(
1998
).
You do not currently have access to this content.