It is shown that the vector potential and the scalar potential satisfy a Buneman-Hartree like (BHL) condition and a Hull-cutoff like (HCL) condition everywhere within the Brillouin flow of a cylindrical, relativistic magnetron, when the phase velocity in the Buneman-Hartree condition is replaced by the laminar, local flow velocity of the Brillouin flow. The vector potential and the scalar potentials include the Brillouin flow’s self magnetic field and the self electric fields. The HCL condition reduces to the conventional Hull cutoff condition derived from single particle orbit theory when the Brillouin hub extends to the anode. However, the BHL condition reduces to the conventional Buneman-Hartree condition only in the planar magnetron limit but may be substantially different for a cylindrical magnetron, as demonstrated recently [Lau et al., Phys. Plasmas 17, 033102 (2010)]. These conclusions apply also to the inverted magnetron configuration. The effects of ions are discussed.

1.
J. C.
Slater
,
Microwave Electronics
(
Van Nostrand
,
New York
,
1951
), p.
302
.
2.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 2nd ed. (
Taylor and Francis
,
New York
,
2007
).
3.
R. J.
Barker
,
N. C.
Luhmann
,
J. H.
Booske
, and
G. S.
Nusinovich
,
Modern Microwave and Millimeter Wave Power Electronics
(
IEEE
,
Piscataway, NJ
,
2004
).
4.
V. L.
Granatstein
and
I.
Alexeff
,
High-Power Microwave Sources
(
Artech House
,
Norwood, MA
,
1987
).
5.
R. C.
Davidson
,
Physics of Nonneutral Plasmas
(
Addison-Wesley
,
Redwood City, CA
,
1990
).
6.
Y. Y.
Lau
, in
High-Power Microwave Sources
, edited by
V. L.
Granatstein
and
I.
Alexeff
(
Artech House
,
Norwood, MA
,
1987
), p.
309
.
7.
R. M.
Gilgenbach
,
Y. Y.
Lau
,
H.
McDowell
,
K. L.
Cartwright
, and
T. A.
Spencer
, in
Modern Microwave and Millimeter Wave Power Electronics
, edited by
R. J.
Barker
,
N. C.
Luhmann
,
J. H.
Booske
, and
G. S.
Nusinovich
(
IEEE
,
Piscataway, NJ
,
2004
).
8.
R. L.
Walker
, in
Microwave Magnetrons
, edited by
G. B.
Colloins
(
McGraw-Hill
,
NY
,
1948
), p.
227
.
9.
T. M.
Antonsen
and
E.
Ott
,
Phys. Fluids
19
,
52
(
1976
).
10.
R. V.
Lovelace
and
T. S. T.
Young
,
Phys. Fluids
28
,
2450
(
1985
).
11.
J. R. M.
Vaughan
,
IEEE Trans. Electron Devices
20
,
818
(
1973
).
12.
Y. Y.
Lau
,
J. W.
Luginsland
,
K. L.
Cartwright
,
D. H.
Simon
,
W.
Tang
,
B. W.
Hoff
, and
R. M.
Gilgenbach
,
Phys. Plasmas
17
,
033102
(
2010
).
13.
It is assumed that the slow wave structure of a magnetron at the anode has no effect on the particle orbit and on the Brillouin flow, and the inner radius of the vane tip is taken to be the anode radius (b) of the equivalent smooth bore magnetron (Fig. 1). It is these slow wave structures that allow βph < 1 in Eq. (2).
14.
R. C.
Davidson
,
G. L.
Johnston
,
K. T.
Tsang
, and
A. T.
Drobot
,
Proc. SPIE
1061
,
186
(
1989
).
15.
R. M.
Gilgenbach
,
Y. Y.
Lau
,
D. M.
French
,
B. W.
Hoff
,
M.
Franzi
, and
J. W.
Luginsland
,
IEEE Trans. Plasma Sci.
39
,
980
(
2011
).
16.
D.
Chernin
and
Y. Y.
Lau
,
Phys. Fluids
27
,
2319
(
1984
).
17.
D. M.
French
,
B. W.
Hoff
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
97
,
111501
(
2010
).
18.
O.
Buneman
, in
Crossed-Field Microwave Devices
, edited by
E.
Okress
(
Academic
,
New York
,
1961
), p.
218
.
19.
A.
Palevsky
, Doctoral Dissertation,
Massachusetts Institute of Technology, Cambridge, MA
,
1980
.
20.
P. J.
Christenson
,
D.
Chernin
,
A.
Gardner
, and
Y. Y.
Lau
,
Phys. Plasmas
3
,
4455
(
1996
).
21.
The general solution to A(r) contains a term C/r in the right hand side of Eq. (5), where C is an arbitrary constant. This term does not contribute to the magnetic field by Eq. (7). We set C = 0 upon setting A(a) = 0. The arbitrariness in A is also removed upon specification of the total magnetic flux within the gap.
22.
M.
Lopez
,
Y. Y.
Lau
,
J. W.
Luginsland
,
D. W.
Jordan
, and
R. M.
Gilgenbach
,
Phys. Plasmas
11
,
4489
(
2003
).
23.
P. J.
Christenson
and
Y. Y.
Lau
,
Phys. Plasmas
3
,
4293
(
1996
).
24.
P. J.
Christenson
, Doctoral Dissertation,
University of Michigan, Ann Arbor
,
1996
.
25.
A. H.
Falkner
,
Proc. IEE
120
,
959
(
1973
);
A. H.
Falkner
,
Proc. IEE
121
,
548
(
1974
).
26.
H. L.
McDowell
,
IEEE Trans. Plasma Sci.
30
,
980
(
2002
).
27.
K. D.
Bergeron
,
Appl. Phys. Lett.
28
,
306
(
1976
);
K. D.
Bergeron
,
Phys. Fluids
20
,
688
(
1977
).
28.
Y. Y.
Lau
,
J. W.
Luginsland
,
K. L.
Cartwright
, and
M. D.
Haworth
,
Phys. Rev. Lett.
98
,
015002
(
2007
).
29.
B. S.
Stutzman
and
J. W.
Luginsland
,
IEEE Trans. Plasma Sci.
38
,
2010
(
2010
).
You do not currently have access to this content.