General equations for dust-driven currents and current systems JD in magnetized plasmas are derived and, as a concrete example, applied to the E ring of Saturn at radial distances 3RS<R<5RS. An azimuthal ring current JD,ϕ acts as a current generator and is coupled to two secondary dust-driven current systems down to the ionosphere of Saturn, both rotating with the magnetospheric plasma. One of these closes across the polar cap, and the other over a limited range in latitude. These dust-driven current systems are embedded in three systems of plasma-driven currents Jp: a ring current, a cross-polar-cap current system, and an ion pickup current system. Both the JD and the Jp current systems have been quantitatively assessed from a data set for the E ring of Saturn in which the unknown distribution of small dust is treated by a power law extrapolation from the known distribution of larger dust. From data on the magnetic perturbations during a crossing of the equatorial plane, an approximate constraint on the fraction of the electrons that can be trapped on the dust is derived. For this amount of electron capture, it is demonstrated that all three types of dust-driven currents are, within somewhat more than an order of magnitude, of the same strength as the corresponding types of plasma-driven currents. Considering also that both plasma and dust densities vary with the geyser activity at the south pole of Enceladus, it is concluded that both the dust-driven and the plasma-driven contributions to the current system associated with the E ring need to be retained for a complete description.

1.
N.
Brenning
, “
Interaction between a dust cloud and a magnetized plasma in relative motion
,”
IEEE Trans. Plasma Science
29
,
302
306
(
2001
).
2.
N.
Brenning
,
M. C.
Kelley
,
J.
Providakes
,
H. C.
Stenbaek-Nielsen
, and
C.
Swenson
, “
Barium swarm: An ionospheric alternating current generator in CRIT I
,”
J. Geophys. Res.
96
,
9735
9743
, doi: (
1991
).
3.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
and
G. E.
Morfill
, “
Complex (dusty) plasmas: Current status, open issues, perspectives
,”
Phys. Rep.
421
,
1
103
(
2005
).
4.
M.
Holmberg
, “Determination of solar EUV intensity and ion flux from Langmuir probe current characteristics,” Master’s thesis (
Uppsala University
, Uppsala, Sweden,
2010
).
5.
A. J.
Mallinckrodt
and
C. W.
Carlson
, “
Relations between transverse electric fields and field-aligned currents
,”
J. Geophys. Res.
83
,
1426
, doi: (
1978
).
6.
J. F.
Carbary
,
D. G.
Mitchell
,
C.
Paranicas
,
E. C.
Roelof
, and
S. M.
Krimigis
, “
Direct observation of warping in the plasma sheet of Saturn
,”
Geophys. Res. Lett.
35
,
L24201
, doi: (
2008
).
7.
D. A.
Gurnett
,
A. M.
Persoon
,
W. S.
Kurth
,
J. B.
Groene
,
T. F.
Averkamp
,
M. K.
Dougherty
, and
D. J.
Southwood
, “
The variable rotation period of the inner region of Saturn’s plasma disk
,”
Science
316
,
442
445
(
2007
).
8.
F.
Bagenal
, “
Giant planet magnetospheres
,”
Ann. Rev. Earth Planetary Sci.
20
,
289
328
(
1992
).
9.
D. J.
Andrews
,
E. J.
Bunce
,
S. W. H.
Cowley
,
M. K.
Dougherty
,
G.
Provan
, and
D. J.
Southwood
, “
Planetary period oscillations in Saturn’s magnetosphere: Phase relation of equatorial magnetic field oscillations and Saturn kilometric radiation modulation
,”
J. Geophys. Res.
113
,
A09205
, doi: (
2008
).
10.
D. A.
Gurnett
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
A. M.
Persoon
,
T. F.
Averkamp
,
B.
Cecconi
,
A.
Lecacheux
,
P.
Zarka
,
P.
Canu
,
N.
Cornilleau-Wehrlin
,
P.
Galopeau
,
A.
Roux
,
C.
Harvey
P.
Louarn
,
R.
Bostrom
,
G.
Gustafsson
,
J.-E.
Wahlund
,
M. D.
Desch
,
W. M.
Farrell
,
M. L.
Kaiser
,
K.
Goetz
,
P. J.
Kellogg
,
G.
Fischer
,
H.-P.
Ladreiter
,
H.
Rucker
,
H.
Alleyne
, and
A.
Pedersen
, “
Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit
,”
Science
307
,
1255
1259
(
2005
).
11.
W. S.
Kurth
,
T. F.
Averkamp
,
D. A.
Gurnett
,
J. B.
Groene
, and
A.
Lecacheux
, “
An update to a Saturnian longitude system based on kilometric radio emissions
,”
J. Geophys. Res.
113
,
A05222
, doi: (
2008
).
12.
P.
Goldreich
and
A. J.
Farmer
, “
Spontaneous axisymmetry breaking of the external magnetic field at Saturn
,”
J. Geophys. Res.
112
,
A05225
, doi: (
2007
).
13.
D. J.
Southwood
and
M. G.
Kivelson
, “
Saturnian magnetospheric dynamics: Elucidation of a camshaft model
,”
J. Geophys. Res.
112
,
A12222
, doi: (
2007
).
14.
S. A.
Espinosa
,
D. J.
Southwood
, and
M. K.
Dougherty
, “
How can Saturn impose its rotation period in a noncorotating magnetosphere?
,”
J. Geophys. Res.
108
(
A2
),
1086
, doi: (
2003
).
15.
J. F.
Carbary
,
D. G.
Mitchell
,
S. M.
Krimigis
, and
N.
Krupp
, “
Evidence for spiral pattern in Saturn’s magnetosphere using the new SKR longitudes
,”
Geophys. Res. Lett.
34
,
L13105
, doi: (
2007
).
16.
J. F.
Carbary
,
D. G.
Mitchell
,
S. M.
Krimigis
,
D. C.
Hamilton
, and
N.
Krupp
, “
Spin-period effects in magnetospheres with no axial tilt
,”
Geophys. Res. Lett.
34
,
L18107
, doi: (
2007
).
17.
K. K.
Khurana
,
D. G.
Mitchell
,
C. S.
Arridge
,
M. K.
Dougherty
,
C. T.
Russel
,
C.
Paranicas
,
N.
Krupp
, and
A. J.
Coates
, “
Sources of rotational signals in Saturn’s magnetosphere
,”
J. Geophys. Res.
114
,
A02211
, doi: (
2009
).
18.
A. M.
Persoon
,
D. A.
Gurnett
,
O.
Santolik
,
W. S.
Kurth
,
J. B.
Faden
,
J. B.
Groene
,
G. R.
Lewis
,
A. J.
Coates
,
R. J.
Wilson
, and
R. L.
Tokar
, “
A diffusive equilibrium model for the plasma density in Saturn’s magnetosphere
,”
J. Geophys. Res.
114
,
A04211
, doi: (
2009
).
19.
J.
Olson
,
N.
Brenning
,
J.-E.
Wahlund
, and
H.
Gunell
, “
On the interpretation of Langmuir probe data inside a spacecraft sheath
,”
Rev. Sci. Instrum.
81
,
105106
(
2010
).
20.
S.
Kempf
,
U.
Beckmann
,
G.
Moragas-Klostermeyer
,
F.
Postberg
,
R.
Srama
,
T.
Economou
,
J.
Schmidt
,
F.
Spahn
, and
E.
Grun
, “
The E ring in the vicinity of Enceladus: I. Spatial distribution and properties of the ring particles
,”
Icarus
193
,
420
437
(
2008
).
21.
M. R.
Showalter
,
J. N.
Cuzzi
, and
S. M.
Larson
, “
Structure and particle properties of Saturn’s E ring
,”
Icarus
94
,
451
473
(
1991
).
22.
S.
Kempf
,
U.
Beckmann
, and
J.
Schmidt
, “
How the Enceladus dust plume feeds Saturn’s E ring
,”
Icarus
206
,
446
457
(
2010
).
23.
M.
Hornyi
,
A.
Juhsz
, and
G. E.
Morfill
, “
Large-scale structure of Saturn’s E-ring
,”
Geophys. Res. Lett.
35
,
L04203
, doi: (
2008
).
24.
V. V.
Yaroshenko
,
S.
Ratynskaia
,
J.
Olson
,
N.
Brenning
,
J.-E.
Wahlund
,
M.
Morooka
,
W. S.
Kurth
,
D. A.
Gurnett
, and
G. E.
Morfill
, “
Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus
,”
Planet. Space Sci.
57
,
1807
1812
(
2009
).
25.
O.
Havnes
, “
Charges on dust particles
,”
Adv. Space Res.
4
,
75
83
(
1984
).
26.
J.-E.
Wahlund
,
M.
Andr
,
A. I. E.
Eriksson
,
M.
Lundberg
,
M. W.
Morooka
,
M.
Shafiq
,
T. F.
Averkamp
,
D. A.
Gurnett
,
G. B.
Hospodarsky
,
W. S.
Kurth
,
K. S.
Jacobsen
,
A.
Pedersen
,
W.
Farrell
,
S.
Ratynskaia
, and
N.
Piskunov
, “
Detection of dusty plasma near the E-ring of Saturn
,”
Planet. Space Sci.
57
,
1795
1806
(
2009
).
27.
C. K.
Goertz
, “
Dusty plasmas in the solar system
,”
Rev. Geophys.
27
,
271
292
, doi: (
1989
).
28.
E. C.
Whipple
, “
Potentials of surfaces in space
,”
Rep. Prog. Phys.
44
,
1197
(
1981
).
29.
Yu.
Tyshetskiy
and
S. V.
Vladimirov
, “
Quantum-tunneling-enhanced charging of nanoparticles in plasmas
,”
Phys. Rev. E
83
,
046406
(
2011
).
30.
N.
Sergis
,
S. M.
Krimigis
,
E. C.
Roelof
,
C. S.
Arridge
,
A. M.
Rymer
,
D. G.
Mitchell
,
D. C.
Hamilton
,
N.
Krupp
,
M. F.
Thomsen
,
M. K.
Dougherty
,
A. J.
Coates
, and
D. T.
Young
, “
Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements
,”
Geophys. Res. Let.
37
,
L02102
, doi: (
2010
).
31.
K. C.
Hansen
,
A. J.
Ridley
,
G. B.
Hospodarsky
,
N.
Achilleos
,
M. K.
Dougherty
,
T. I.
Gombosi
and
G.
Tth
, “
Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach
,”
Geophys. Res. Lett.
32
,
L20S06
, doi: (
2005
).
32.
S. I.
Popel
and
A. A.
Gisko
, “
Charged dust and shock phenomena in the Solar system
,”
Nonlinear Processes Geophys.
13
,
223
229
(
2006
).
33.
S. I.
Popel
and
V. N.
Tsytovich
, “
Shocks in space dusty plasmas
,”
Astrophys. Space Sci.
264
,
219
226
(
1999
).
34.
L.
Mestel
and
L.
Spitzer
, Jr.
, “
Star formation in magnetic dust clouds
,”
Mon. Not. R. Astron. Soc.
116
,
503
(
1956
).
35.
H.
Alfvén
, “
On the theory of comet tails
,”
Tellus
9
,
92
96
(
1957
).
36.
Very dense dust that captures more than a small fraction of the ambient electrons decreases the electron collection current of Eq. (1) and therefore would float at a potential that is less negative than that of an isolated dust grain in a plasma of the same temperature (Ref. 25). In Table I, values that are uncertain due to this effect are indicated by “”.
You do not currently have access to this content.