Ion Larmor radius effects on collisionless magnetic reconnection in the presence of a guide field are investigated by means of numerical simulations based on a gyrofluid model for compressible plasmas. Compressibility along the magnetic field is seen to favour the distribution of ion guiding center density along the neutral line, rather than along the separatrices, unlike the electron density. On the other hand, increasing ion temperature reduces the intensity of localized ion guiding center flows that develop in the direction parallel to the guide field. Numerical simulations suggest that the width of these bar-shaped velocity layers scale linearly with the ion Larmor radius. The increase of ion temperature radius causes also a reduction of the electron parallel velocity. As a consequence, it is found that the cusp-like current profiles distinctive of non-dissipative reconnection are strongly attenuated. The field structures are interpreted in terms of the behavior of the four topological invariants of the system. Two of these are seen to behave similarly to invariants of simpler models that do not account for parallel ion flow. The other two exhibit different structures, partly as a consequence of the small electron/ion mass ratio. The origin of these invariants at the gyrokinetic level is also discussed. The investigation of the field structures is complemented by an analysis of the energetics of the system.

1.
E. R.
Priest
and
T. G.
Forbes
,
Magnetic Reconnection: MHD Theory and Applications
(
Cambridge University Press
,
2000
).
2.
D.
Biskamp
,
Magnetic Reconnection in Plasmas
(
Cambridge University Press
,
2000
).
3.
D.
Del Sarto
,
F.
Califano
, and
F.
Pegoraro
,
Mod. Phys. Lett. B
20
,
931
(
2006
).
4.
E.
Tassi
,
P. J.
Morrison
,
D.
Grasso
, and
F.
Pegoraro
,
Nucl. Fusion
50
,
034007
(
2010
).
5.
A. J.
Brizard
,
Phys. Fluids B
4
,
1213
(
1992
).
6.
W.
Dorland
and
G. W.
Hammett
,
Phys. Fluids B
5
,
812
(
1993
).
7.
M. A.
Beer
and
G. W.
Hammett
,
Phys. Plasmas
3
,
4046
(
1996
).
8.
B.
Scott
,
Phys. Plasmas
7
,
1845
(
2000
).
9.
P. B.
Snyder
and
G. W.
Hammett
,
Phys. Plasmas
8
,
3199
(
2001
).
10.
D.
Strintzi
,
B. D.
Scott
, and
A. J.
Brizard
,
Phys. Plasmas
12
,
052517
(
2005
).
11.
B.
Scott
,
Phys. Plasmas
17
,
102306
(
2010
).
12.
D.
Grasso
,
F.
Califano
,
F.
Pegoraro
, and
F.
Porcelli
,
Plasma Phys. Rep.
26
,
512
(
2000
).
13.
D.
Del Sarto
,
C.
Marchetto
,
F.
Pegoraro
, and
F.
Califano
,
Plasma Phys. Controlled Fusion
53
,
035008
(
2011
).
14.
F. L.
Waelbroeck
,
R. D.
Hazeltine
, and
P. J.
Morrison
,
Phys. Plasmas
16
,
032109
(
2009
).
15.
D.
Grasso
,
E.
Tassi
, and
F. L.
Waelbroeck
,
Phys. Plasmas
17
,
082312
(
2010
).
16.
E.
Tassi
,
F. L.
Waelbroeck
, and
D.
Grasso
,
J. Phys.: Conf. Ser.
260
,
012020
(
2010
).
17.
F. L.
Waelbroeck
and
E.
Tassi
,
Commun. Nonlinear Sci. Numer. Simul.
17
,
2171
(
2012
).
18.
A.
Biancalani
and
B. D.
Scott
,
Europhys. Lett.
97
,
15005
(
2012
).
19.
S.
Vincena
,
W.
Gekelman
, and
J.
Maggs
,
Phys. Rev. Lett.
93
,
105003
(
2004
).
20.
X.
yu Wang
,
X.
yi Wang
,
Z.
xing Liu
, and
Z.
yuan Li
,
Phys. Plasmas
5
,
4395
(
1998
).
21.
B. N.
Rogers
,
R. E.
Denton
,
J. F.
Drake
, and
M. A.
Shay
,
Phys. Rev. Lett.
87
,
195004
(
2001
).
22.
R.
Fitzpatrick
and
F.
Porcelli
,
Phys. Plasmas
11
,
4713
(
2004
);
R.
Fitzpatrick
and
F.
Porcelli
,
Phys. Plasmas
14
,
049902
(
2007
).
23.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
24.
25.
E.
Cafaro
,
D.
Grasso
,
F.
Pegoraro
,
F.
Porcelli
, and
A.
Saluzzi
,
Phys. Rev. Lett.
80
,
4430
(
1998
).
26.
D.
Grasso
,
F.
Califano
,
F.
Pegoraro
, and
F.
Porcelli
,
Phys. Rev. Lett.
86
,
5051
(
2001
).
27.
A. Y.
Aydemir
,
Phys. Fluids B
4
,
3469
(
1992
).
28.
X.
Wang
and
A.
Bhattacharjee
,
Phys. Rev. Lett.
70
,
1627
(
1993
).
29.
M.
Ottaviani
and
F.
Porcelli
,
Phys. Rev. Lett.
71
,
3802
(
1993
).
30.
X.
Wang
and
A.
Bhattacharjee
,
Phys. Plasmas
2
,
171
(
1995
).
31.
M.
Ottaviani
and
F.
Porcelli
,
Phys. Plasmas
2
,
4104
(
1995
).
32.
B.
Rogers
and
L.
Zakharov
,
Phys. Plasmas
3
,
2411
(
1996
).
33.
D.
Grasso
,
F.
Pegoraro
,
F.
Porcelli
, and
F.
Califano
,
Plasma Phys. Controlled Fusion
41
,
5051
(
1999
).
34.
A.
Bhattacharjee
,
K.
Germaschewski
, and
C. S.
Ng
,
Phys. Plasmas
12
,
042305
(
2005
).
35.
F. L.
Waelbroeck
,
Phys. Rev. Lett.
70
,
3259
(
1993
).
36.
J. F.
Drake
and
R. G.
Kleva
,
Phys. Rev. Lett.
66
,
1458
(
1991
).
37.
J. F.
Drake
,
R. G.
Kleva
, and
M. E.
Mandt
,
Phys. Rev. Lett.
73
,
1251
(
1994
).
38.
D.
Biskamp
,
E.
Schwarz
, and
J. F.
Drake
,
Phys. Rev. Lett.
75
,
3850
(
1995
).
39.
D.
Biskamp
,
E.
Schwarz
, and
J. F.
Drake
,
Phys. Plasmas
4
,
1002
(
1997
).
40.
B.
Scott
and
F.
Porcelli
,
Phys. Plasmas
11
,
5468
(
2004
).
41.
D.
Grasso
,
D.
Borgogno
,
F.
Pegoraro
, and
E.
Tassi
,
Nonlinear Processes Geophys.
16
,
241
(
2009
).
42.
E.
Tassi
,
D.
Grasso
, and
F.
Pegoraro
,
Commun. Nonlinear Sci. Numer. Simul.
15
,
2
(
2010
).
43.
D.
Del Sarto
,
F.
Califano
, and
F.
Pegoraro
,
Phys. Rev. Lett.
91
,
235001
(
2003
).
44.
D.
Del Sarto
,
F.
Califano
, and
F.
Pegoraro
,
Phys. Plasmas
12
,
012317
(
2005
).
45.
H. J.
de Blank
,
Phys. Plasmas
8
,
3927
(
2001
).
46.
T. J.
Schep
,
F.
Pegoraro
, and
B. N.
Kuvshinov
,
Phys. Plasmas
1
,
2843
(
1994
).
47.
T. V.
Liseikina
,
F.
Pegoraro
, and
E.
Yu. Echkina
,
Phys. Plasmas
11
,
3535
(
2004
).
48.
F.
Pegoraro
,
T.
Liseikina
, and
E.
Yu. Echkina
,
Transp. Theory Stat. Phys.
34
,
243
(
2005
).
49.
F.
Pegoraro
,
T.
Liseikina
, and
E.
Yu. Echkina
,
Phys. Scr.
T116
,
88
(
2005
).
50.
A.
Zocco
and
A. A.
Schekochihin
,
Phys. Plasmas
18
,
102309
(
2011
).
You do not currently have access to this content.