A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m−3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

1.
C.
Teske
and
J.
Jacoby
,
IEEE Trans. Plasma Sci.
36
,
1930
(
2008
).
2.
C.
Teske
and
J.
Jacoby
, Patent No. 039 758.7-54 (Pending).
3.
C.
Teske
,
J.
Jacoby
,
F.
Senzel
, and
W.
Schweizer
,
Phys. Plasmas
17
,
043501
(
2010
).
4.
C.
Teske
,
J.
Jacoby
,
W.
Schweizer
, and
J.
Wiechula
,
Rev. Sci. Instrum.
80
,
034702
(
2009
).
5.
C.
Teske
,
B.-J.
Lee
,
J.
Jacoby
,
W.
Schweizer
, and
J. C.
Sun
,
Rev. Sci. Instrum.
81
,
046101
(
2010
).
6.
F. R. T.
Luna
,
G. H.
Cavalcanti
, and
A. G.
Trigueiros
,
J. Phys. D: Appl. Phys.
31
,
866
(
1998
).
7.
P. A.
Silberg
,
J. Appl. Phys.
37
,
2155
(
1965
).
8.
S.
Aisenberg
,
D. V.
Missio
, and
P. A.
Silberg
,
J. Appl. Phys.
35
,
3625
(
1964
).
9.
T. S.
Green
,
Phys. Fluids
6
,
864
(
1963
).
10.
A. C.
Kolb
,
Rev. Mod. Phys.
32
,
748
(
1960
).
11.
L. M.
Goldman
,
R. W.
Kilb
,
H. C.
Pollock
, and
J. A.
Reynolds
,
Phys. Fluids
8
,
522
(
1965
).
12.
C.
Teske
,
B.-J.
Lee
,
A.
Fedjuschenko
,
J.
Jacoby
, and
W.
Schweizer
,
IEEE Trans. Plasma Sci.
38
,
1675
(
2010
).
13.
J.
Ashkenazy
,
R.
Kipper
, and
M.
Caner
,
Phys. Rev. A
43
,
5568
(
1991
).
14.
W. L.
Wiese
,
D. E.
Kelleher
, and
D. R.
Paquette
,
Phys. Rev. A
6
,
1132
(
1972
).
15.
H. R.
Griem
,
Plasma Spectroscopy
(
McGraw-Hill
,
New York
,
1964
).
16.
V.
Hellbig
and
K.-P.
Nick
,
J. Phys. B
14
,
3573
(
1981
).
17.
M.
Daeler
,
G. A.
Sawyer
, and
K. S.
Thomas
,
Phys. Fluids
12
,
225
(
1969
).
18.
N.
Balcon
,
A.
Aanesland
, and
B.
Boswell
,
Plasma Sources Sci. Technol.
16
,
217
(
2007
).
19.
N.
Konjevic
and
W. L.
Wiese
,
J. Chem. Ref. Data
5
,
259
(
1976
).
20.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New Jersey
,
2005
).
21.
J. R.
Roth
:
Industrial Plasma Engineering. Volume 1
(
Institute of Physics Publishing
,
Bristol and Philadelphia
,
1995
).
22.
M.
Sato
,
Il Nuovo Cimento
1
,
22
(
1962
).
23.
S.
Nowak
,
J. A. M.
van der Mullen
, and
D. C.
Schram
,
Spectrochim. Acta, Part B
43
,
1235
(
1988
).
24.
S.
Nowak
,
J. A. M.
van der Mullen
,
A. C. A. P.
van Lammeren
, and
D. C.
Schram
,
Spectrochim. Acta, Part B
44
,
411
(
1989
).
25.
D. G. J.
Weir
and
M. W.
Blades
,
Spectrochim. Acta, Part B
49
,
1231
(
1994
).
26.
You do not currently have access to this content.