The structure of shocks that form at the exhaust boundaries during collisionless reconnection of anti-parallel fields is studied using particle-in-cell (PIC) simulations and modeling based on the anisotropic magnetohydrodynamic equations. Large-scale PIC simulations of reconnection and companion Riemann simulations of shock development demonstrate that the pressure anisotropy produced by counterstreaming ions within the exhaust prevents the development of classical Petschek switch-off-slow shocks (SSS). The shock structure that does develop is controlled by the firehose stability parameter ɛ=1-μ0(P-P)/B2 through its influence on the speed order of the intermediate and slow waves. Here, P and P are the pressure parallel and perpendicular to the local magnetic field. The exhaust boundary is made up of a series of two shocks and a rotational wave. The first shock takes ɛ from unity upstream to a plateau of 0.25 downstream. The condition ɛ=0.25 is special because at this value, the speeds of nonlinear slow and intermediate waves are degenerate. The second slow shock leaves ɛ=0.25 unchanged but further reduces the amplitude of the reconnecting magnetic field. Finally, in the core of the exhaust, ɛ drops further and the transition is completed by a rotation of the reconnecting field into the out-of-plane direction. The acceleration of the exhaust takes place across the two slow shocks but not during the final rotation. The result is that the outflow speed falls below that expected from the Walén condition based on the asymptotic magnetic field. A simple analytic expression is given for the critical value of ɛ within the exhaust below which SSSs no longer bound the reconnection outflow.

1.
H. E.
Petschek
, in
Proceedings of AAS-NASA Symposium on the Physics of Solar Flares
(
NASA
,
Washington, D.C.
,
1964
), Vol. 50 of NASA-SP, pp.
425
439
.
2.
T.
Sato
and
T.
Hayashi
,
Phys. Fluids
22
,
1189
(
1979
).
3.
S.
Tsuneta
,
Astrophys. J.
456
,
840
(
1996
).
4.
D. W.
Longcope
and
S. E.
Guidoni
,
Astrophys. J.
740
,
73
(
2011
).
5.
T. D.
Phan
,
J. T.
Gosling
,
M. S.
Davis
,
R. M.
Skoug
,
M.
Øieroset
,
R. P.
Lin
,
R. P.
Lepping
,
D. J.
McComas
,
C. W.
Smith
,
H.
Rème
, and
A.
Balogh
,
Nature (London)
439
,
175
(
2006
).
6.
J.
Seon
,
L. A.
Frank
,
W. R.
Paterson
,
J. D.
Scudder
,
F. V.
Coroniti
,
S.
Kokubun
, and
T.
Yamamoto
,
J. Geophys. Res.
101
,
27383
, doi: (
1996
).
7.
R. G.
Kleva
,
J. F.
Drake
, and
F. L.
Waelbroeck
,
Phys. Plasmas
2
,
23
(
1995
).
8.
Z. W.
Ma
and
A.
Bhattacharjee
,
Geophys. Res. Lett.
23
,
1673
, doi: (
1996
).
9.
M. A.
Shay
,
J. F.
Drake
,
B. N.
Rogers
, and
R. E.
Denton
,
Geophys. Res. Lett.
26
,
2163
, doi: (
1999
).
10.
M. A.
Shay
,
J. F.
Drake
,
M.
Swisdak
, and
B. N.
Rogers
,
Phys. Plasmas
11
,
2199
(
2004
).
11.
M. A.
Shay
,
J. F.
Drake
, and
M.
Swisdak
,
Phys. Rev. Lett.
99
,
155002
(
2007
).
12.
R. F.
Lottermoser
,
M.
Scholer
, and
A. P.
Matthews
,
J. Geophys. Res.
103
,
4547
, doi: (
1998
).
13.
K.
Arzner
and
M.
Scholer
,
J. Geophys. Res.
106
,
3827
, doi: (
2001
).
14.
M. S.
Nakamura
,
M.
Fujimoto
, and
K.
Maezawa
,
J. Geophys. Res.
103
,
4531
, doi: (
1998
).
15.
M.
Hoshino
,
T.
Mukai
,
T.
Yamamoto
, and
S.
Kokubun
,
J. Geophys. Res.
103
,
4509
, doi: (
1998
).
16.
J. T.
Gosling
,
R. M.
Skoug
,
D. J.
McComas
, and
C. W.
Smith
,
J. Geophys. Res.
110
,
A01107
, doi: (
2005
).
17.
T. D.
Phan
,
G.
Paschmann
,
C.
Twitty
,
F. S.
Mozer
,
J. T.
Gosling
,
J. P.
Eastwood
,
M.
Øieroset
,
H.
Rème
, and
E. A.
Lucek
,
Geophys. Res. Lett.
34
,
L14104
, doi: (
2007
).
18.
J. F.
Drake
,
M.
Swisdak
,
T. D.
Phan
,
P. A.
Cassak
,
M. A.
Shay
,
S. T.
Lepri
,
R. P.
Lin
,
E.
Quataert
, and
T. H.
Zurbuchen
,
J. Geophys. Res.
114
,
05111
, doi: (
2009
).
19.
Y.-H.
Liu
,
J. F.
Drake
, and
M.
Swisdak
,
Phys. Plasmas
18
,
062110
(
2011
).
20.
Y.-H.
Liu
,
J. F.
Drake
, and
M.
Swisdak
,
Phys. Plasmas
18
,
092102
(
2011
).
21.
Y.
Lin
and
L. C.
Lee
,
Space Sci. Rev.
65
,
59
(
1993
).
22.
M.
Scholer
and
R. F.
Lottermoser
,
Geophys. Res. Lett.
25
,
3281
, doi: (
1998
).
23.
H.
Karimabadi
,
D.
Krauss-Varban
, and
N.
Omidi
,
Geophys. Res. Lett.
22
,
2689
, doi: (
1995
).
24.
A.
Zeiler
,
D.
Biskamp
,
J. F.
Drake
,
B. N.
Rogers
,
M. A.
Shay
, and
M.
Scholer
,
J. Geophys. Res.
107
,
1230
, doi: (
2002
).
25.
H.
Karimabadi
,
D.
Krauss-Varban
,
N.
Omidi
, and
H. X.
Vu
,
J. Geophys. Res.
104
,
12
313
, doi: (
1999
).
26.
K.
Arzner
and
M.
Scholer
,
Earth, Planets Space
53
,
655
(
2001
).
27.
J. F.
Drake
,
M. A.
Shay
, and
M.
Swisdak
,
Phys. Plasmas
15
,
042306
(
2008
).
28.
B. U. Ö.
Sonnerup
,
G.
Paschmann
,
I.
Papamastorakis
,
N.
Sckopke
,
G.
Haerendel
,
S.
Bame
,
J. R.
Asbridge
,
J. T.
Gosling
, and
C. T.
Russell
,
J. Geophys. Res.
86
,
10049
, doi: (
1981
).
29.
F. V.
Coroniti
,
Nucl. Fusion
11
,
261
(
1971
).
30.
J. K.
Chao
,
Report No. CSR TR-70-s
,
Massachusetts Institute of Technology
,
Center for Space Research
,
Cambridge, MA
,
1970
.
31.
P. D.
Hudson
,
Planet. Space Sci.
18
,
1611
(
1970
).
32.
L.-N.
Hau
and
C. -C.
Hung
,
Geophys. Res. Lett.
,
32
,
L14103
, (
2005
).
33.
D. W.
Walthour
,
J. T.
Gosling
,
B. U. Ö.
Sonnerup
, and
C. T.
Russell
,
J. Geophys. Res.
99
,
23705
, (
1994
).
34.
K.
Higashimori
and
M.
Hoshino
,
J. Geophys. Res.
117
,
A01220
, doi:, (
2012
).
35.
L.-N.
Hau
and
B. U. Ö.
Sonnerup
,
J. Geophys. Res.
94
,
6539
, doi: (
1989
).
You do not currently have access to this content.