The effects of field emission on direct current breakdown in microscale gaps filled with an ambient neutral gas are studied numerically and analytically. Fundamental numerical experiments using the particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale ionization and space-charge enhancement of field emission. The numerical experiments are then used to validate a scaling law for the modified Paschen curve that bridges field emission-driven breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in cathode electric field, total steady state current density, and the ion-enhancement coefficient including a new breakdown criterion. It also includes the effect of all key parameters such as pressure, operating gas, and field-enhancement factor providing a better predictive capability than existing microscale breakdown models. The field-enhancement factor is shown to be the most sensitive parameter with its increase leading to a significant drop in the threshold breakdown electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also shown to agree well with two independent sets of experimental data for microscale breakdown in air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown process for given operating conditions makes the proposed model a suitable candidate for the design and analysis of electrostatic microscale devices.

1.
R.
Gomer
,
Field Emission and Field Ionization
(
American Institute of Physics
,
1992
).
2.
Y.
Feng
and
J. P.
Verboncoeur
, “
A model for effective field enhancement for Fowler–Nordheim field emission
,”
Phys. Plasmas
12
,
103301
(
2005
).
3.
Y.
Feng
and
J. P.
Verboncoeur
, “
Transition from Fowler-Nordheim field emission to space charge limited current density
,”
Phys. Plasmas
13
,
073105
(
2006
).
4.
Y.
Feng
,
J. P.
Verboncoeur
, and
M. C.
Lin
, “
Solution for space charge limited field emission current densities with injection velocity and geometric effects corrections
,”
Phys. Plasmas
15
,
043301
(
2008
).
5.
J. M.
Meek
and
J. D.
Craggs
,
Electrical Breakdown of Gases
(
John Wiley & Sons
,
1953
).
6.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
7.
W. S.
Boyle
and
P.
Kisliuk
, “
Departure from Paschen's law of breakdown in gases
,”
Phys. Rev.
97
(
2
),
255
(
1955
).
8.
L. H.
Germer
, “
Electrical Breakdown between Close Electrodes in Air
,”
J. Appl. Phys.
30
(
1
),
46
51
(
1959
).
9.
P.
Kisliuk
, “
Electron emission at high fields due to positive ions
,”
J. Appl. Phys.
30
(
1
),
51
55
(
1959
).
10.
J. M.
Torres
and
R. S.
Dhariwal
, “
Electric field breakdown at micrometre separations
,”
Nanotechnology
10
,
102
107
(
1999
).
11.
D. B.
Go
and
D. A.
Pohlman
, “
A mathematical model of the modified Paschen's curve for breakdown in microscale gaps
,”
J. Appl. Phys.
107
(
10
),
103303
103303
(
2010
).
12.
A. J.
Wallash
and
L.
Levit
, “
Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps
,”
Proc. SPIE
4980
,
87
96
(
2003
).
13.
M.
Radmilovic-Radjenovic
and
B.
Radjenovic
, “
The influence of ion-enhanced field emission on the high-frequency breakdown in microgaps
,”
Plasma Sources Sci. Technol.
16
,
337
340
(
2007
).
14.
M.
Radmilovic-Radjenovic
,
J. K.
Lee
,
F.
Iza
, and
G. Y.
Park
, “
Particle-in-cell simulation of gas breakdown in microgaps
,”
J. Phys. D: Appl. Phys.
38
,
950
(
2005
).
15.
M.
Radmilovic-Radjenovic
and
B.
Radjenovic
, “
A particle-in-cell simulation of the high-field effect in devices with micrometer gaps
,”
IEEE Trans. Plasma Sci.
35
,
1223
1228
(
2007
).
16.
A.
Garg
,
A.
Venkattraman
,
A.
Kovacs
,
A.
Alexeenko
, and
D.
Peroulis
, “
Direct measurement of field emission current in E-Static MEMS structures
,” in 24th International Conference on Micro Electro Mechanical Systems, 412–415 (
2011
).
17.
A.
Venkattraman
,
A.
Garg
,
D.
Peroulis
, and
A. A.
Alexeenko
, “
Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches
,”
Appl. Phys. Lett.
100
(
8
),
083503
083503
(
2012
).
18.
R.
Tirumala
and
D. B.
Go
, “
An analytical formulation for the modified Paschen's curve
,”
Appl. Phys. Lett.
97
,
151502
(
2010
).
19.
W.
Zhang
,
T. S.
Fisher
, and
S. V.
Garimella
, “
Simulation of ion generation and breakdown in atmospheric air
,”
J. Appl. Phys.
96
,
6066
(
2004
).
20.
R. H.
Fowler
and
L. W.
Nordheim
, “
Electron emission in intense electric fields
,”
Proc. R. Soc. London, Ser. A
119
(
781
),
173
181
(
1928
).
21.
R. E.
Burgess
,
H.
Kroemer
, and
J. M.
Houston
, “
Corrected values of Fowler-Nordheim field emission functions v (y) and s (y)
,”
Phys. Rev.
90
,
515
(
1953
).
22.
T. E.
Stern
,
B. S.
Gossling
, and
R. H.
Fowler
, “
Further studies in the emission of electrons from cold metals
,”
Proc. R. Soc. London, Ser. A.
124
(
795
),
699
723
(
1929
).
23.
C. K.
Birdsall
,
Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC
,
IEEE Trans. Plasma Sci.
19
(
2
),
65
85
(
1991
).
24.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics Via Computer Simulation
(
Taylor and Francis
,
2004
).
25.
J. P.
Verboncoeur
, “
Particle simulation of plasmas: review and advances
,”
Plasma Phys. Contr. F.
47
,
A231
(
2005
).
26.
J. P.
Verboncoeur
,
M. V.
Alves
,
V.
Vahedi
, and
C. K.
Birdsall
, “
Simultaneous potential and circuit solution for 1 D bounded plasma particle simulation codes
,”
J. Comput. Phys.
104
,
321
328
(
1993
).
27.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer-Verlag
,
2004
).
28.
A.
Venkattraman
, “
Particle simulations of ion generation and transport in microelectromechanical systems and microthrusters
,” Ph.D. dissertation (
Purdue University
, Indiana,
2012
).
29.
L.
Friedland
, “
Electron multiplication in a gas discharge at high values of E/P
,”
J. Phys. D: Appl. Phys.
7
(
16
),
2246
(
1974
).
30.
Y. I.
Davydov
, “
On the first Townsend coefficient at high electric field
,”
IEEE Trans. Nucl. Sci.
53
(
5
),
2931
2935
(
2006
).
31.
P.
Rumbach
and
D. B.
Go
, “
Fundamental properties of field emission-driven direct current microdischarges
,”
J. Appl. Phys.
112
,
103302
(
2012
).
32.
M.
Radmilovic-Radjenovic
and
B.
Radjenovic
, “
Theoretical study of the electron field emission phenomena in the generation of a micrometer scale discharge
,”
Plasma Sources Sci. Technol.
17
,
024005
(
2008
).
33.
A. V.
Phelps
and
B. M.
Jelenkovic
, “
Excitation and breakdown of Ar at very high ratios of electric field to gas density
,”
Phys. Rev. A
38
,
2975
(
1988
).
34.
E.
Hourdakis
,
B. J.
Simonds
, and
N. M.
Zimmerman
, “Submicron gap capacitor for measurement of breakdown voltage in air,”
Rev. Sci. Instrum.
77
,
034702
(
2006
).
35.
R. T.
Lee
,
H. H.
Chung
, and
Y. C.
Chiou
, “
Arc erosion behaviour of silver electric contacts in a single arc discharge across a static gap
,” in IEE Proceedings of Science, Measurement and Technology (
IET
,
2001
), Vol.
148
, pp.
8
14
.
36.
P. G.
Slade
and
E. D.
Taylor
, “
Electrical breakdown in atmospheric air between closely spaced (0.2 μm–40 μm) electrical contacts
,”
IEEE Trans. Compon. Packaging Technol.
25
(
3
),
390
396
(
2002
).
You do not currently have access to this content.