It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

1.
S. R.
Oleson
and
R. M.
Myers
,
J. Spacecr. Rockets
34
,
22
(
1997
).
2.
S. R.
Oleson
, in
Proceedings of the 36th Joint Propulsion Conference and Exhibit, Huntsville, AL
(
American Institute of Aeronautics and Astronautics, Reston
,
2000
), AIAA-2000-3413.
3.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
,
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
4.
A.
Lazurenko
,
V.
Vial
,
A.
Bouchoule
,
A.
Skrylnikov
,
V.
Kozlov
, and
V.
Kim
,
J. Propul. Power
22
,
38
47
(
2006
).
5.
A. I.
Morozov
,
A. I.
Bugrova
,
A. D.
Desiatskov
,
V. K.
Karchevnikov
,
M.
Prioul
, and
L.
Jolivet
, in
Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France
(
Electric Rocket Propulsion Society
,
Cleveland
,
2003
), IEPC-03-290.
6.
L.
Garrigues
,
C.
Boniface
,
G. J. M.
Hagelarr
, and
J. P.
Boef
,
Phys. Plasma
15
,
113502
(
2008
).
7.
D.
Yu
,
M.
Song
,
H.
Liu
,
Y. J.
Ding
, and
H.
Li
,
Phys. Plasmas
19
,
033503
(
2012
).
8.
L.
Garrigues
,
G. J. M.
Hagelaar
,
J.
Bareilles
,
C.
Boniface
, and
J. P.
Boeuf
,
Phys. Plasmas
10
,
4886
(
2003
).
9.
J. A.
Linnell
and
A. D.
Gallimore
,
Phys. Plasmas
13
,
103504
(
2006
).
10.
A. I.
Bugrova
,
A. V.
Desyatskov
,
A. I.
Morozov
,
V. K.
Kharchevnikov
, and
M.
Priol
, in
Proceedings of the 29th International Electric Propulsion Conference, Princeton University
(
Electric Rocket Propulsion Society
,
Cleveland
,
2005
), IEPC-05-146.
11.
D.
Yu
,
M.
Song
,
H.
Liu
,
X.
Zhang
, and
H.
Li
,
Phys. Plasmas
19
,
073511
(
2012
).
12.
F. F.
Chen
,
J. D.
Evans
, and
D.
Arnush
,
Phys. Plasmas
9
,
1449
(
2002
).
13.
C.-J.
Liu
,
J.-X.
Wang
,
K.-L.
Yu
,
B.
Eliasson
 et al.,
J. Electrost.
54
,
149
(
2002
).
14.
J. J.
Szabo
, Jr.
, Ph.D. dissertation,
Massachusetts Institute of Technology
,
2001
.
15.
J. C.
Adam
,
A.
Heron
, and
G.
Laval
,
Phys. Plasmas
11
,
295
(
2004
).
16.
F.
Taccogna
,
R.
Schneider
,
S.
Longo
, and
M.
Capitelli
,
Plasma Sources Sci. Technol.
17
,
024003
(
2008
).
17.
A.
Lazurenko
,
L.
Albarede
, and
A.
Bouchoule
,
Phys. Plasmas
13
,
083503
(
2006
).
18.
G. J. M.
Hagelaar
,
Plasma Sources Sci. Technol.
16
,
S57
(
2007
).
19.
K.
Nanbu
,
IEEE Trans. Plasma Sci.
28
,
971
990
(
2000
).
20.
S. K.
Doss
and
K.
Miller
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
16
,
837
(
1979
).
21.
D. C.
Meeker
,
Finite Element Method Magnetics Version 4.2 User's Manual
(
2008
).
22.
A. I.
Bugrova
,
A. V.
Desyatskov
,
V. K.
Kharchevnikov
,
A. S.
Lipatov
, and
S.
Zurbach
, in
Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy
(
The Electric Rocket Propulsion Society
,
Worthington, OH
,
2007
), IEPC-07-221.
You do not currently have access to this content.