Magnetic reconnection is commonly perceived to drive flow and particle acceleration in flares of solar, stellar, and astrophysical disk coronae but the relative roles of different acceleration mechanisms in a given reconnection environment are not well understood. While outflow fast mode shocks have been predicted analytically, we show for the first time via direct numerical simulations that such shocks do indeed occur in the outflows of fast reconnection when an obstacle is present. These shocks are distinct from the slow mode Petschek inflow shocks. If Fermi acceleration of electrons operates in the weak fast shocks, the associated compression ratios will induce a Fermi acceleration particle spectrum that is significantly steeper than strong fast shocks commonly studied, but consistent with the demands of solar flares. While this is not the only acceleration mechanism operating in a reconnection environment, it is plausibly a ubiquitous one.

1.
M.
Yamada
,
R.
Kulsrud
, and
H.
Ji
,
Rev. Mod. Phys.
82
,
603
(
2010
).
2.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
,
J. Geophys. Res.
106
,
3715
, doi:10.1029/1999JA900449 (
2001
).
3.
D.
Biskamp
,
Magnetic Reconnection in Plasmas
(
Cambridge University
,
Cambridge, UK
,
2000
).
4.
R. M.
Kulsrud
,
Earth Planets Space
53
,
417
(
2001
).
5.
6.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Plasmas
14
,
100703
(
2007
).
7.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
,
ApJ
700
,
63
(
2009
).
8.
G. L.
Eyink
,
A.
Lazarian
, and
E. T.
Vishniac
, arXiv:1103.1882 (
2011
).
9.
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
,
Phys. Plasmas
16
,
112102
(
2009
).
10.
M. M.
Romanova
and
R. V.
E
.
Lovelace, Astron. Astrophys.
262
,
26
(
1992
).
11.
E. G.
Blackman
and
G. B.
Field
,
Phys. Rev. Lett.
73
,
3097
(
1994
).
12.
E. G.
Blackman
,
ApJ
456
,
L87
(
1996
).
13.
E. M.
de Gouveia dal Pino
and
A.
Lazarian
,
Astron. Astrophys.
441
,
845
(
2005
).
14.
G.
Kowal
,
E. M.
de Gouveia Dal Pino
, and
A.
Lazarian
,
Astrophys. J.
735
,
102
(
2011
).
15.
E. G.
Blackman
,
ApJ
484
,
L79
(
1997
).
16.
S.
Tsuneta
,
S.
Masuda
,
T.
Kosugi
, and
J.
Sato
,
ApJ
478
,
787
(
1997
).
17.
S.
Tsuneta
and
T.
Naito
,
ApJ
495
,
L67
(
1998
).
18.
H. E.
Petschek
, in
Physics of Solar Flares
, NASA SP-50, edited by
W. N.
Ness
(
NASA SP-50, National Aeronautics and Space Administration, Scientific and Technical Information Division
,
Washington, D.C
,
1964
), p.
425
.
19.
A. R.
Bell
,
Mon. Not. R. Astron. Soc.
182
,
443
(
1978
).
20.
F.
Jones
and
D.
Ellison
,
Space Sci. Rev.
58
,
259
(
1991
).
21.
R.
Selkowitz
and
E. G.
Blackman
,
Mon. Not. R. Astron. Soc.
379
,
43
(
2007
).
22.
J. M.
Stone
,
T. A.
Gardiner
,
P.
Teuben
,
J. F.
Hawley
, and
J. B.
Simon
,
ApJS
178
,
137
(
2008
).
23.
K.
Beckwith
and
J. M.
Stone
,
ApJS
193
,
6B
(
2011
).
24.
25.
S.
Krucker
,
E. P.
Kontar
,
S.
Christe
, and
R. P.
Lin
,
ApJ
663
,
L109
(
2007
).
26.
T. N.
Larosa
,
R. L.
Moore
,
J. A.
Miller
, and
S. N.
Shore
,
ApJ
467
,
454
(
1996
).
27.
D. A.
Uzdensky
,
Phys. Rev. Lett.
99
,
261101
(
2007
).
28.
E.
Tandberg-Hanssen
and
A. G.
Emslie
,
The Physics of Solar Flares
(
Cambridge University Press
,
Cambridge and New York
,
1988
).
29.
P. C.
Grigis
and
A. O.
Benz
,
ApJ
683
,
1180
(
2008
).
30.
D.
Alexander
and
T. R.
Metcalf
,
ApJ
489
,
442
(
1997
).
31.
A. G.
Emslie
,
ApJ
595
,
L119
(
2003
).
32.
G. A.
Dulk
,
A. L.
Kiplinger
, and
R. M.
Winglee
,
ApJ
389
,
756
(
1992
).
33.
E. M.
de Gouveia dal Pino
and
A.
Lazarian
,
Astron. Astrophys.
441
,
845
(
2005
).
34.
M. J.
Aschwanden
,
R. A.
Schwartz
, and
D. M.
Alt
,
ApJ
447
,
923
(
1995
).
35.
M. J.
Aschwanden
,
R. M.
Bynum
,
T.
Kosugi
,
H. S.
Hudson
, and
R. A.
Schwartz
,
ApJ
487
,
936
(
1997
).
36.
S.
Masuda
,
T.
Kosugi
,
H.
Hara
,
S.
Tsuneta
, and
Y.
Ogawara
,
Nature
371
,
495
(
1994
).
You do not currently have access to this content.