In this research, real gas effects on ablative Rayleigh-Taylor instability are investigated in a plastic target. The real gas effects are included by adopting the quotidian equation of state (QEOS) model. Theoretical solutions for both QEOS and ideal gas EOS are obtained and compared, based on a same set of ablation parameters. It is found that when real gas effects are considered, the density gradient becomes less steep than that of ideal gas assumption, even though this cannot be used directly to draw a stabilization conclusion for the real gas effects. Further analysis shows that when real gas effects are considered, lower ∂p/∂T in the dense shell region has the effect of stabilization, whereas the dependence of the internal energy on the density, lower specific heat (at constant volume) in the dense shell region, and higher specific heat in the low-density ablation region contribute to stronger destabilization effects. Overall, when real gas effects are considered, the destabilization effects are dominant for long wavelength perturbations, and the growth rates become much higher than the results of ideal gas assumption. In our specific case, the maximum relative error reaches 18%.

1.
L.
Rayleigh
,
Proc. London Math. Soc.
14
,
170
(
1883
).
2.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
3.
S.
Atzeni
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion
(
Clarendon
,
Oxford
,
2004
).
4.
J. D.
Lindl
,
Phys. Plasmas
2
,
3933
(
1995
).
5.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
,
Phys. Plasmas
11
,
339
(
2004
).
6.
S. E.
Bodner
,
Phys. Rev. Lett.
33
,
761
(
1974
).
7.
H.
Takabe
,
K.
Mima
,
L.
Montierth
, and
R. L.
Morse
,
Phys. Fluids
28
,
3676
(
1985
).
8.
H. J.
Kull
and
S. I.
Anisimov
,
Phys. Fluids
29
,
2067
(
1986
).
9.
J. G.
Wouchuk
and
A. R.
Piriz
,
Phys. Plasmas
2
,
493
(
1995
).
10.
K. S.
Budil
,
B. A.
Remington
,
T. A.
Peyser
,
K. O.
Mikaelian
,
P. L.
Miller
,
N. C.
Woolsey
,
W. M.
Wood-Vasey
, and
A. M.
Rubenchik
,
Phys. Rev. Lett.
76
,
4536
(
1996
).
11.
R.
Betti
,
V. N.
Goncharov
,
R. L.
McCrory
,
P.
Sorotokin
, and
C. P.
Verdon
,
Phys. Plasmas
3
,
2122
(
1996
).
12.
13.
H.
Azechi
,
M.
Nakai
,
K.
Shigemori
,
N.
Miyanaga
,
H.
Shiraga
,
H.
Nishimura
,
M.
Honda
,
R.
Ishizaki
,
J. G.
Wouchuk
,
H.
Takabe
,
K.
Nishihara
,
K.
Mima
,
A.
Nishiguchi
, and
T.
Endo
,
Phys. Plasmas
4
,
4079
(
1997
).
14.
R.
Betti
,
V. N.
Goncarov
,
R. L.
McCrory
, and
C. P.
Verdon
,
Phys. Plasmas
5
,
1446
(
1998
).
15.
R.
Betti
,
K.
Anderson
,
V. N.
Goncharov
,
R. L.
McCrory
,
D. D.
Meyerhofer
,
S.
Skupsky
, and
R. P. J.
Town
,
Phys. Plasmas
9
,
2277
(
2002
).
16.
A. R.
Piriz
O. D.
Cortázar
,
J. J.
López
Cela
, and
N. A.
Tahir
,
Am. J. Phys.
74
,
1095
(
2006
).
17.
W. H.
Ye
,
W. Y.
Zhang
, and
X. T.
He
,
Phys. Rev. E
65
,
057401
(
2002
).
18.
Z. F.
Fan
,
J. S.
Luo
, and
W. H.
Ye
,
Chin. Phys. Lett.
24
,
2308
(
2007
).
19.
Z. F.
Fan
,
J. S.
Luo
, and
W. H.
Ye
,
Phys. Plasmas
16
,
102104
(
2009
).
20.
V. A.
Smalyuk
,
S. X.
Hu
,
V. N.
Goncharov
,
D. D.
Meyerhofer
,
T. C.
Sangster
,
D.
Shvarts
,
C.
Stoeckl
,
B.
Yaakobi
,
J. A.
Frenje
and
R. D.
Petrasso
,
Phys. Rev. Lett.
101
,
025002
(
2008
).
21.
R. P.
Drake
,
High Energy Density Physics: Foundations of Inertial Fusion and Experimental Astrophysics
(
Springer
,
New York
,
2006
).
22.
D.
Livescu
,
Phys. Fluids
16
,
118
(
2004
).
23.
C.
Xue
and
W. H.
Ye
,
Phys. Plasmas
17
,
042705
(
2010
).
24.
D. S.
Clark
,
S. W.
Haan
,
B. A.
Hammel
,
J. D.
Salmonson
,
D. A.
Callahan
, and
R.
Town
,
J. Phys.: Conf. Ser.
244
,
022010
(
2010
).
25.
R. M.
More
,
K. H.
Warren
,
D. A.
Young
, and
G. B.
Zimmerman
,
Phys. Fluids
31
,
3059
(
1988
).
26.
S.
Hasegawa
and
K.
Nishihara
,
Phys. Plasmas
2
,
4606
(
1995
).
27.
M. R.
Malik
,
S.
Chuang
, and
M. Y.
Hussaini
,
ZAMP
33
,
189
(
1982
).
You do not currently have access to this content.