Using the small-k expansion perturbation method, the three-dimensional stability of dust-ion acoustic solitary waves (DIASWs) in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles is analyzed. A nonlinear Zakharov–Kuznetsov equation adequate for describing these solitary structures is derived. Moreover, the basic features of the DIASWs are studied. The determination of the stability region leads to two different cases depending on the oblique propagation angle. In addition, the growth rate of the produced waves is estimated. The increase of either the negative ion number density or their temperatures or even the number density of the dust grains results in reducing the wave growth rate. Finally, the present results should elucidate the properties of DIASWs in a multicomponent plasma with negative ions, particularly in laboratory experiment and plasma process.

1.
B. A.
Klumov
,
S. I.
Pople
, and
R.
Bingham
,
JETP Lett.
72
,
364
(
2000
).
2.
S.
Ghosh
,
Phys. Plasmas
12
,
094504
(
2005
).
3.
K.
Ostrikov
,
Rev. Mod. Phys.
77
,
489
(
2005
).
4.
S. H.
Kim
and
R. L.
Merlino
,
Phys. Plasmas
13
,
052118
(
2006
).
5.
R. L.
Merlino
and
S. H.
Kim
,
Appl. Phys. Lett.
89
,
091501
(
2006
).
6.
M.
Rosenberg
and
R. L.
Merlino
,
Planet. Space Sci.
55
,
1464
(
2007
).
7.
A. Y.
Wong
,
D. L.
Mamas
, and
D.
Arnush
,
Phys. Fluids
18
,
1489
(
1975
).
8.
J. L.
Cooney
,
M. T.
Gavin
, and
K. E.
Lonngren
,
Phys. Fluids B
3
,
2758
(
1991
).
9.
Y.
Nakamura
,
T.
Odagiri
, and
I.
Tsukabayashi
,
Plasma Phys. Controlled Fusion
39
,
105
(
1997
).
10.
Y.
Nakamura
,
H.
Bailung
, and
K. E.
Lonngren
,
Phys. Plasmas
6
,
3466
(
1999
).
11.
B.
Song
,
N.
D’Angelo
, and
R. L.
Merlino
,
Phys. Fluids B
3
,
284
(
1991
).
12.
N.
Sato
,
Plasma Sources Sci. Technol.
3
,
395
(
1994
).
13.
R.
Ichiki
,
S.
Yoshimura
,
T.
Watanabe
,
Y.
Nakamura
,
Y.
Kawai
,
Phys. Plasmas
9
,
4481
(
2002
).
14.
N.
D’Angelo
and
R. L.
Merlino
,
IEEE Trans. Plasma Sci.
14
,
285
(
1986
).
15.
M. K.
Mishra
and
R. S.
Chhabra
,
Phys. Plasmas
3
,
4446
(
1996
).
16.
R.
Ichiki
,
M.
Shindo
,
S.
Yoshimura
,
T.
Watanabe
, and
Y.
Kawai
,
Phys. Plasmas
8
,
4275
(
2001
).
17.
P. K.
Shukla
and
V. P.
Silin
,
Phys. Scr.
45
,
508
(
1992
).
18.
A.
Barkan
,
N.
D’Angelo
, and
R. L.
Merlino
,
Planet. Space Sci.
44
,
239
(
1996
).
19.
A. A.
Mamun
,
R. A.
Cairns
, and
P. K.
Shukla
,
Phys. Lett. A
373
,
2355
(
2009
).
20.
I.
Denysenko
,
M. Y.
Yu
,
L.
Stenflo
, and
N. A.
Azarenkov
,
Phys. Plasmas
12
,
042102
(
2005
).
21.
A.
Sarma
and
Y.
Nakamura
,
Phys. Lett. A
373
,
4174
(
2009
).
22.
E.
Infeld
and
G.
Rowlands
,
J. Plasma Phys.
10
,
293
(
1973
).
23.
M. A.
Allen
and
G.
Rowlands
,
J. Plasma Phys.
50
,
413
(
1993
).
25.
A. A.
Mamun
,
S. M.
Russell
,
C. A.
Mendoza-Briceño
,
M. N.
Alam
,
T. K.
Datta
, and
A. K.
Das
,
Planet. Space Sci.
48
,
163
(
2000
).
26.
M. G. M.
Anowar
and
A. A.
Mamun
,
IEEE Trans. Plasma Sci.
37
,
1638
(
2009
).
27.
M. G. M.
Anowar
and
A. A.
Mamun
,
IEEE Trans. Plasma Sci.
36
,
2867
(
2008
).
28.
M.
Shalaby
,
S. K.
EL-Labany
,
E. F.
EL-Shamy
,
W. F.
El-Taibany
, and
M. A.
Khaled
,
Phys. Plasmas
16
,
123706
(
2009
).
29.
H.
Washimi
and
T.
Taniuti
,
Phys. Rev. Lett.
17
,
996
(
1966
).
You do not currently have access to this content.