Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol.8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as 12 power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the safety factor all have fractal structure. The average field diffusion near the X-point for lines that strike and that do not strike differs by about three to four orders of magnitude. The magnetic footprint gives the maximal bounds on size and heat flux density on collector plate.

1.
A.
Boozer
,
Phys. Fluids
26
,
1288
(
1983
).
2.
J. R.
Cary
and
R. G.
Littlejohn
,
Ann. Phys. (N.Y.)
151
,
1
(
1983
).
3.
A. H.
Boozer
,
Rev. Mod. Phys.
76
,
1071
(
2005
).
4.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd ed. (
Chelsea
,
New York
/
American Mathematical Society
,
Providence
,
1978
), p.
xx
.
5.
A.
Weinstein
,
J. Diff. Geom.
18
,
523
(
1983
).
6.
J. D.
Meiss
,
Rev. Mod. Phys.
64
,
795
(
1992
).
7.
A.
Punjabi
and
H.
Ali
,
Phys. Plasmas
15
,
122502
(
2008
).
9.
J. L.
Luxon
and
L. E.
Davis
,
Fusion Technol.
8
,
441
(
1985
).
10.
A.
Punjabi
,
H.
Ali
,
T.
Evans
, and
A.
Boozer
,
Phys. Lett. A
364
,
140
(
2007
).
11.
A.
Punjabi
,
A.
Verma
, and
A.
Boozer
,
Phys. Rev. Lett.
69
,
3322
(
1992
).
12.
O.
Kerwin
,
A.
Punjabi
, and
H.
Ali
,
Phys. Plasmas
15
,
072504
(
2008
).
13.
A.
Punjabi
,
A.
Verma
, and
A.
Boozer
,
J. Plasma Phys.
52
,
91
(
1994
).
14.
A.
Punjabi
,
A.
Verma
, and
A.
Boozer
,
J. Plasma Phys.
56
,
569
(
1996
).
15.
A.
Punjabi
,
H.
Ali
, and
A.
Boozer
,
Phys. Plasmas
4
,
337
(
1997
).
16.
H.
Ali
,
A.
Punjabi
, and
A.
Boozer
,
Phys. Plasmas
11
,
1908
(
2004
).
17.
H.
Ali
and
A.
Punjabi
,
Phys. Plasmas
11
,
4527
(
2004
).
18.
A.
Punjabi
,
H.
Ali
, and
A.
Boozer
,
Phys. Plasmas
10
,
3992
(
2003
).
19.
H.
Ali
,
A.
Punjabi
, and
A.
Boozer
,
J. Plasma Phys.
75
,
303
(
2009
).
20.
M.
Jones
,
H.
Wadi
,
H.
Ali
, and
A.
Punjabi
,
Phys. Plasmas
16
,
042511
(
2009
).
21.
A.
Punjabi
,
H.
Ali
, and
H.
Farhat
,
Plasma Phys. Controlled Fusion
51
,
075009
(
2009
).
22.
H.
Ali
,
A.
Punjabi
, and
J.
Vazquez
,
Radiat. Eff. Defects Solids
165
,
83
(
2010
).
23.
L.
Lao
,
H.
St John
,
Q.
Peng
,
J.
Ferron
,
E.
Strait
,
T.
Taylor
,
W.
Meyer
,
C.
Zhang
, and
K.
You
,
Fusion Sci. Technol.
48
,
968
(
2005
).
24.
D.
McDuff
and
D.
Salamon
,
Introduction to Symplectic Topology
(
Oxford Press
,
Oxford
/
Clarendon
,
1998
), pp.
265
280
.
25.
T. E.
Evans
,
Proceedings of the 18th European Conference on Controlled Fusion and Plasma Physics
, Berlin, Germany,
1991
(
European Physical Society
,
Petit-Lancy
,
1991
), Part II, p.
65
.
26.
J. L.
Luxon
,
M. J.
Schaffer
,
G. L.
Jackson
,
J. A.
Leuer
,
A.
Nagy
,
J. T.
Scoville
, and
E. J.
Strait
,
Nucl. Fusion
43
,
1813
(
2003
).
27.
T. E.
Evans
,
R. A.
Moyer
,
P. R.
Thomas
,
J. G.
Watkins
,
T. H.
Osborne
,
J. A.
Boedo
,
E. J.
Doyle
,
M. E.
Fenstermacher
,
K. H.
Finken
,
R. J.
Groebner
,
M.
Groth
,
J. H.
Harris
,
R. J.
La Haye
,
C. J.
Lasnier
,
S.
Masuzaki
,
N.
Ohyabu
,
D. G.
Pretty
,
T. L.
Rhodes
,
H.
Reimerdes
,
D. L.
Rudakov
,
M. J.
Schaffer
,
G.
Wang
, and
L.
Zeng
,
Phys. Rev. Lett.
92
,
235003
(
2004
).
28.
J.
Cartwright
and
O.
Piro
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
427
(
1992
).
29.
J. M.
Sanz-Serna
, in
Acta Numerica 1992
, edited by
A.
Iserles
(
Cambridge University Press
,
Cambridge
,
1992
), pp.
243
286
.
30.
P. J.
Channell
and
C.
Scovel
,
Nonlinearity
3
,
231
(
1990
).
31.
A.
Boozer
and
A.
Rechester
,
Phys. Fluids
21
,
682
(
1978
).
32.
T. E.
Evans
,
R. A.
Moyer
,
K. H.
Burrell
,
M. E.
Fenstermacher
,
I.
Joseph
,
A. W.
Leonard
,
T. H.
Osborne
,
G. D.
Porter
,
M. J.
Schaffer
,
P. B.
Snyder
,
P. R.
Thomas
,
J. G.
Watkins
, and
W. P.
West
,
Nat. Phys.
2
,
419
(
2006
).
33.
T. E.
Evans
,
R. K. W.
Roeder
,
J. A.
Carter
,
B. I.
Rapoport
,
M. E.
Fenstermacher
, and
C. J.
Lasnier
,
J. Phys.: Conf. Ser.
7
,
174
(
2005
).
34.
A. H.
Boozer
,
Alfvén Prize Acceptance Speech at the 2010 EPS Conference on Plasma Physics
, Dublin, Ireland, June
2010
A. H.
Boozer
[
Plasma Phys. Controlled Fusion
52
,
124002
(
2010
)].
You do not currently have access to this content.