Fast magnetic reconnection, believed to be a mechanism for rearranging the magnetic topology and creating energetic particles in many astrophysical and laboratory plasmas, is investigated with the nonlinear gyrokinetic code Gene. After some code-code benchmarking, extensive linear studies are presented, covering all relevant parameter dependencies of two-dimensional slab reconnection. The results are used to ascertain the validity of a fluid model and understand for which parameters it fails to describe the physics correctly. The nonlinear phase is studied for two scenarios: decaying and driven turbulence. In the former case, the initially injected energy is cascading towards the largest scales of the system, whereas a fully turbulent, quasi-stationary state develops if the system is driven through a Krook-type term in the gyrokinetic Vlasov equation.

1.
E. N.
Parker
,
J. Geophys. Res.
62
,
509
, doi: 10.1029/JZ062i004p00509, (
1957
).
2.
P. A.
Sweet
, in
Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
(
Cambridge University Press
,
New York
,
1958
),
p
123
3.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
,
Phys. Rev. Lett.
95
,
235002
(
2005
).
4.
D.
Grasso
,
E.
Tassi
, and
F. L.
Waelbroeck
,
Phys. Plasmas
17
,
082312
(
2010
).
5.
A.
Perona
,
L.-G.
Eriksson
, and
D.
Grasso
,
Phys. Plasmas
17
,
042104
(
2010
).
6.
R.
Fitzpatrick
,
Phys. Plasmas
17
,
042101
(
2010
).
7.
D.
Del Sarto
,
C.
Marchetto
,
F.
Pegoraro
, and
F.
Califano
,
Plasma Phys. Controlled Fusion
53
,
035008
(
2011
).
8.
A.
Biancalani
and
B. D.
Scott
, “
Observation of explosive collisionless reconnection in 3D nonlinear gyrofluid simulations
,”
Europhys. Lett.
(submitted).
9.
T.
Matsumoto
,
S.
Tokuda
,
Y.
Kishimoto
,
T.
Takizuka
, and
H.
Naitou
,
J. Plasma Fusion Res.
75
,
1188
(
1999
).
10.
W.
Wan
,
Y.
Chen
, and
S. E.
Parker
,
Phys. Plasmas
12
,
012311
(
2005
).
11.
B. N.
Rogers
,
S.
Kobayashi
,
P.
Ricci
,
W.
Dorland
,
J.
Drake
, and
T.
Tatsuno
,
Phys. Plasmas
14
,
092110
(
2007
).
12.
X. Y.
Wang
,
Y.
Lin
,
L.
Chen
, and
Z.
Lin
,
Phys. Plasmas
15
,
072103
(
2008
).
13.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
14.
T. S.
Hahm
,
W. W.
Lee
, and
A.
Brizard
,
Phys. Fluids
31
,
1940
(
1988
).
15.
A.
Brizard
,
J. Plasma Phys.
41
,
541
(
1989
).
16.
F.
Merz
,
Ph.D. thesis
,
University of Münster
,
2009
.
17.
See http://gene.rzg.mpg.de for code access and documentation.
18.
M. J.
Pueschel
,
T.
Dannert
, and
F.
Jenko
,
Comput. Phys. Commun.
181
,
1428
(
2010
).
19.
X.
Lapillonne
,
B. F.
McMillan
,
T.
Görler
,
S.
Brunner
,
T.
Dannert
,
F.
Jenko
,
F.
Merz
, and
L.
Villard
,
Phys. Plasmas
17
,
112321
(
2010
).
20.
A. B.
Navarro
,
P.
Morel
,
M.
Albrecht-Marc
,
D.
Carati
,
F.
Merz
,
T.
Görler
, and
F.
Jenko
,
Phys. Plasmas
18
,
092303
(
2011
).
21.
B. N.
Rogers
, private communication (
2010
).
22.
E. G.
Harris
,
Nuovo Cimento
23
,
115
(
1962
).
23.
B. N.
Rogers
,
S.
Kobayashi
,
P.
Ricci
,
W.
Dorland
,
J.
Drake
, and
T.
Tatsuno
,
Phys. Plasmas
18
,
049902
(
2011
).
24.
R.
Numata
,
G. G.
Howes
,
T.
Tatsuno
,
M.
Barnes
, and
W.
Dorland
,
J. Comput. Phys.
229
,
9347
(
2010
).
25.
F.
Porcelli
,
Phys. Rev. Lett.
66
,
425
(
1991
).
26.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
27.
E.
Tassi
,
F. L.
Waelbroeck
, and
D.
Grasso
,
J. Phys. Conf. Ser.
260
,
012020
(
2010
).
28.
G. G.
Plunk
,
S. C.
Cowley
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
J. Fluid Mech.
664
,
407
(
2010
).
29.
E. S.
Weibel
,
Phys. Rev. Lett.
2
,
83
(
1959
).
30.
G. G.
Howes
,
W.
Dorland
,
S. C.
Cowley
,
G. W.
Hammett
,
E.
Quataert
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
Phys. Rev. Lett.
100
,
065004
(
2008
).
You do not currently have access to this content.