A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasma beta of order the electron-ion mass ratio. The model contains collisions and can be used both in the collisional and collisionless reconnection regimes. It includes gyrokinetic ions (not assumed cold) and allows for the topological rearrangement of the magnetic field lines by either resistivity or electron inertia, whichever predominates. The two-fluid dynamics are coupled to electron kinetics—electrons are not assumed isothermal and are described by a reduced drift-kinetic equation. The model, therefore allows for irreversibility and conversion of magnetic energy into electron heat via parallel phase mixing in velocity space. An analysis of the exchanges between various forms of free energy and its conversion into electron heat is provided. It is shown how all relevant linear waves and regimes of the tearing instability (collisionless, semicollisional, and fully resistive) are recovered in various limits of our model. An efficient way to simulate our equations numerically is proposed, via the Hermite representation of the velocity space. It is shown that small scales in velocity space will form, giving rise to a shallow Hermite-space spectrum, whence it is inferred that, for steady-state or sufficiently slow dynamics, the electron heating rate will remain finite in the limit of vanishing collisionality.

1.
D.
Biskamp
,
Magnetic Reconnection in Plasmas
(
Cambridge University Press
,
Cambridge
,
2000
).
2.
M.
Yamada
,
R.
Kulsrud
, and
H.
Ji
,
Rev. Mod. Phys.
82
,
603
(
2010
).
3.
R. J.
Hastie
,
Astrophys. Space Sci.
256
,
177
(
1998
).
4.
R.
Giovannelli
,
Mon. Not. R. Astron. Soc.
107
,
2163
(
1947
).
5.
P. A.
Sweet
,
Annu. Rev. Astron. Astrophys.
7
,
149
(
1969
).
6.
7.
C. J.
Xiao
,
X. G.
Wang
,
Z. Y.
Pu
,
H.
Zhao
,
J. X.
Wang
,
Z. W.
Ma
,
S. Y.
Fu
,
M. G.
Kivelson
,
Z. X.
Liu
,
Q. G.
Zong
,
K. H.
Glassmeier
,
A.
Balogh
,
A.
Korth
,
H.
Reme
, and
C. P.
Escoubet
,
Nat. Phys.
2
,
478
(
2006
).
8.
J. P.
Eastwood
,
T.
Phan
,
F. S.
Mozer
,
M. A.
Shay
,
M.
Fujimoto
,
A.
Retinò
,
M.
Hesse
,
A.
Balogh
,
E. A.
Lucek
, and
I.
Dandouras
,
J. Geophys. Res.
112
,
6235
, doi:10.1029/2006JA012158 (
2007
).
9.
A.
Retinò
,
D.
Sundkvist
,
A.
Vaivads
,
F.
Mozer
,
M.
André
, and
C. J.
Owen
,
Nat. Phys.
3
,
236
(
2007
).
10.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P. A.
Cassak
, and
P.
Dmitruk
,
Phys. Rev. Lett.
102
,
115003
(
2009
).
11.
J. F.
Drake
,
M.
Swisdak
,
H.
Che
, and
M. A.
Shay
,
Nature
443
,
553
(
2006
).
12.
J. F.
Drake
,
M.
Opher
,
M.
Swisdak
, and
J. N.
Chamoun
,
Astrophys. J.
709
,
963
(
2010
), 0911.3098.
13.
D. A.
Uzdensky
, Space Sci. Rev., in press, e-print arXiv:1101.2472.
14.
A.
Bhattacharjee
,
Annu. Rev. Astron. Astrophys.
42
,
365
(
2004
).
15.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
,
Phys. Rev. Lett.
95
,
235002
(
2005
).
16.
D. A.
Uzdensky
,
Astrophys. J.
671
,
2139
(
2007
).
17.
P. A.
Sweet
, in
Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
, IAU Symposium (
Cambridge University Press
,
1958
), Vol.
6
, p.
123
.
18.
E. N.
Parker
,
J. Geophys. Res.
62
,
509
, doi:10.1029/JZ062i004p00509 (
1957
).
19.
B. N.
Rogers
,
R. E.
Denton
,
J. F.
Drake
, and
M. A.
Shay
,
Phys. Rev. Lett.
87
,
195004
(
2001
).
20.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Plasmas
14
,
100703
(
2007
).
21.
R.
Samtaney
,
N. F.
Loureiro
,
D. A.
Uzdensky
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Rev. Lett.
103
,
105004
(
2009
).
22.
A.
Bhattacharjee
,
Y.
Huang
,
H.
Yang
, and
B.
Rogers
,
Phys. Plasmas
16
,
112102
(
2009
).
23.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
,
Phys. Plasmas
16
,
120702
(
2009
).
24.
Y.
Huang
and
A.
Bhattacharjee
,
Phys. Plasmas
17
,
062104
(
2010
).
25.
D. A.
Uzdensky
,
N. F.
Loureiro
, and
A. A.
Schekochihin
,
Phys. Rev. Lett.
105
,
235002
(
2010
).
26.
W. H.
Matthaeus
and
S. L.
Lamkin
,
Phys. Fluids
29
,
2513
(
1986
).
27.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
,
Astrophys. J.
700
,
63
(
2009
).
28.
29.
N. F.
Loureiro
,
D. A.
Uzdensky
,
A. A.
Schekochihin
,
S. C.
Cowley
, and
T. A.
Yousef
,
Mon. Not. R. Astron. Soc.
399
,
L146
(
2009
).
30.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
,
J. Geophys. Res.
106
,
3715
, doi:10.1029/1999JA900449 (
2001
).
31.
P.
Ricci
,
J. U.
Brackbill
,
W.
Daughton
, and
G.
Lapenta
,
Phys. Plasmas
11
,
4102
(
2004
).
32.
W.
Daughton
,
J.
Scudder
, and
H.
Karimabadi
,
Phys. Plasmas
13
,
072101
(
2006
).
33.
J. F.
Drake
,
M. A.
Shay
, and
M.
Swisdak
,
Phys. Plasmas
15
,
042306
(
2008
).
34.
W.
Daughton
,
V.
Roytershteyn
,
B. J.
Albright
,
H.
Karimabadi
,
L.
Yin
, and
K. J.
Bowers
,
Phys. Rev. Lett.
103
,
065004
(
2009
).
35.
W.
Daughton
,
V.
Roytershteyn
,
B. J.
Albright
,
H.
Karimabadi
,
L.
Yin
, and
K. J.
Bowers
,
Phys. Plasmas
16
,
072117
(
2009
).
36.
R. D.
Hazeltine
,
C. T.
Hsu
, and
P. J.
Morrison
,
Phys. Fluids
30
,
3204
(
1987
).
37.
T. J.
Schep
,
F.
Pegoraro
, and
B. N.
Kuvshinov
,
Phys. Plasmas
1
,
2843
(
1994
).
38.
R.
Fitzpatrick
and
F.
Porcelli
,
Phys. Plasmas
11
,
4713
(
2004
).
39.
R.
Fitzpatrick
and
F.
Porcelli
,
Phys. Plasmas
14
,
049902
(
2007
).
40.
F. L.
Waelbroeck
,
R. D.
Hazeltine
, and
P. J.
Morrison
,
Phys. Plasmas
16
,
032109
(
2009
).
41.
E.
Tassi
,
P. J.
Morrison
,
D.
Grasso
, and
F.
Pegoraro
,
Nucl. Fusion
50
,
034007
(
2010
).
42.
W.
Wan
,
Y.
Chen
, and
S. E.
Parker
,
Phys. Plasmas
12
,
012311
(
2005
).
43.
B. N.
Rogers
,
S.
Kobayashi
,
P.
Ricci
,
W.
Dorland
,
J.
Drake
, and
T.
Tatsuno
,
Phys. Plasmas
14
,
092110
(
2007
).
44.
X. Y.
Wang
,
Y.
Lin
,
L.
Chen
, and
Z.
Lin
,
Phys. Plasmas
15
,
072103
(
2008
).
45.
A.
Perona
,
L.-G.
Eriksson
, and
D.
Grasso
,
Phys. Plasmas
17
,
042104
(
2010
).
46.
R.
Numata
,
W.
Dorland
,
G. G.
Howes
,
N. F.
Loureiro
,
B. N.
Rogers
, and
T.
Tatsuno
, e-print arXiv:1107.5842.
47.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
48.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
G. G.
Plunk
,
E.
Quataert
, and
T.
Tatsuno
,
Plasma Phys. Controlled Fusion
50
,
124024
(
2008
).
49.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
,
Astrophys. J. Suppl.
182
,
310
(
2009
).
50.
E.
Cafaro
,
D.
Grasso
,
F.
Pegoraro
,
F.
Porcelli
, and
A.
Saluzzi
,
Phys. Rev. Lett.
80
,
4430
(
1998
).
51.
D.
Grasso
,
F.
Califano
,
F.
Pegoraro
, and
F.
Porcelli
,
Phys. Rev. Lett.
86
,
5051
(
2001
).
52.
K.
Bowers
and
H.
Li
,
Phys. Rev. Lett.
98
,
035002
(
2007
).
53.
H. J.
de Blank
,
Phys. Plasmas
8
,
3927
(
2001
).
54.
H. J.
de Blank
and
G.
Valori
,
Plasma Phys. Controlled Fusion
45
,
A309
(
2003
).
55.
T. V.
Liseikina
,
F.
Pegoraro
, and
E. Y.
Echkina
,
Phys. Plasmas
11
,
3535
(
2004
).
56.
F.
Pegoraro
,
T.
Liseikina
, and
E.
Yu Echkina
,
Transp. Theory Stat. Phys.
34
,
243
(
2005
).
57.
M.
Yamada
,
Y.
Ren
,
H.
Ji
,
J.
Breslau
,
S.
Gerhardt
,
R.
Kulsrud
, and
A.
Kuritsyn
,
Phys. Plasmas
13
,
052119
(
2006
).
58.
A.
Zocco
,
L.
Chacón
, and
A. N.
Simakov
,
Phys. Plasmas
16
,
110703
(
2009
).
59.
T.
Tatsuno
,
W.
Dorland
,
A. A.
Schekochihin
,
G. G.
Plunk
,
M.
Barnes
,
S. C.
Cowley
, and
G. G.
Howes
,
Phys. Rev. Lett.
103
,
015003
(
2009
).
60.
S. I.
Braginskii
, in
Reviews of Plasma Physics
, edited by
M. A.
Leontovich
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
61.
G. G.
Howes
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
E.
Quataert
, and
A. A.
Schekochihin
,
Astrophys. J.
651
,
590
(
2006
).
62.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
63.
B.
Coppi
,
R.
Galvão
,
R.
Pellat
, and
M. N.
Rosenbluth
,
Sov. J. Plasma Phys.
11
,
226
(
1975
).
64.
G.
Ara
,
B.
Basu
,
B.
Coppi
,
G.
Laval
,
M. N.
Rosenbluth
, and
B. V.
Wadell
,
Ann. Phys.
112
,
443
(
1978
).
65.
J. F.
Drake
,
Phys. Fluids
21
,
1777
(
1978
).
66.
J. F.
Drake
and
Y. C.
Lee
,
Phys. Fluids
20
,
1341
(
1977
).
67.
S. C.
Cowley
,
R. M.
Kulsrud
, and
T. S.
Hahm
,
Phys. Fluids
29
,
3230
(
1986
).
68.
F.
Pegoraro
and
T. J.
Schep
,
Plasma Phys. Controlled Fusion
28
,
647
(
1986
).
69.
F.
Pegoraro
,
F.
Porcelli
, and
T. J.
Schep
,
Phys. Fluids B
1
,
364
(
1989
).
70.
A. Y.
Aydemir
,
Phys. Fluids B
3
,
3025
(
1991
).
71.
G.
Laval
,
R.
Pellat
, and
M.
Vuillemin
,
Plasma Phys. Controlled Nucl. Fusion Res.
2
,
259
(
1965
).
72.
B.
Basu
and
B.
Coppi
,
Phys. Fluids
24
,
465
(
1981
).
73.
74.
L.
Zakharov
and
B.
Rogers
,
Phys. Fluids B
4
,
3285
(
1992
).
75.
B. N.
Kuvshinov
,
Plasma Phys. Controlled Fusion
36
,
867
(
1994
).
76.
V. V.
Mirnov
,
C. C.
Hegna
, and
S. C.
Prager
,
Phys. Plasmas
11
,
4468
(
2004
).
77.
V. M.
Vasyliunas
,
Rev. Geophys.
13
,
303
, doi:10.1029/RG013i001p00303 (
1975
).
78.
79.
S. V.
Bulanov
,
F.
Pegoraro
, and
A. S.
Sakharov
,
Phys. Fluids B
4
,
2499
(
1992
).
80.
M.
Ottaviani
and
F.
Porcelli
,
Phys. Rev. Lett.
71
,
3802
(
1993
).
81.
W.
Gekelman
,
H.
Pfister
,
Z.
Lucky
,
J.
Bamber
,
D.
Leneman
, and
J.
Maggs
,
Rev. Sci. Instrum.
62
,
2875
(
1991
).
82.
G.
Saibene
,
N.
Oyama
,
J.
Lönnroth
,
Y.
Andrew
,
E.
de la Luna
,
C.
Giroud
,
G. T. A.
Huysmans
,
Y.
Kamada
,
M. A. H.
Kempenaars
,
A.
Loarte
,
D.
McDonald
,
M. M. F.
Nave
,
A.
Meiggs
,
V.
Parail
,
R.
Sartori
,
S.
Sharapov
,
J.
Stober
,
T.
Suzuki
,
M.
Takechi
,
K.
Toi
, and
H.
Urano
,
Nucl. Fusion
47
,
969
(
2007
).
83.
L.
Spitzer
and
R.
Härm
,
Phys. Rev.
89
,
977
(
1953
).
84.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
Cambridge
,
2002
).
85.
S. C.
Cowley
, Ph.D. thesis, Princeton University,
1985
.
87.
A.
Lenard
and
I. B.
Bernstein
,
Phys. Rev.
112
,
1456
(
1958
).
88.
I. G.
Abel
,
M.
Barnes
,
S. C.
Cowley
,
W.
Dorland
, and
A. A.
Schekochihin
,
Phys. Plasmas
15
,
122509
(
2008
).
89.
H. R.
Strauss
,
Phys. Fluids
19
,
134
(
1976
).
90.
I. G.
Abel
,
G. G.
Plunk
,
E.
Wang
,
M.
Barnes
,
S. C.
Cowley
,
W.
Dorland
, and
A. A.
Schekochihin
,
Plasma Phys. Controlled Fusion
(submitted).
91.
F. C.
Grant
and
M. R.
Feix
,
Phys. Fluids
10
,
696
(
1967
).
92.
T. P.
Armstrong
,
Phys. Fluids
10
,
1269
(
1967
).
93.
G. W.
Hammett
,
M. A.
Beer
,
W.
Dorland
,
S. C.
Cowley
, and
S. A.
Smith
,
Plasma Phys. Controlled Fusion
35
,
973
(
1993
).
94.
S. E.
Parker
and
D.
Carati
,
Phys. Rev. Lett.
75
,
441
(
1995
).
95.
H.
Sugama
,
T.-H.
Watanabe
, and
W.
Horton
,
Phys. Plasmas
8
,
2617
(
2001
).
96.
G. G.
Howes
,
W.
Dorland
,
S. C.
Cowley
,
G. W.
Hammett
,
E.
Quataert
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
Phys. Rev. Lett.
100
,
065004
(
2008
).
97.
N. F.
Loureiro
,
A.
Zocco
, and
A. A.
Schekochihin
(unpublished).
98.
A.
Kolmogorov
,
Dokl. Akad. Nauk SSSR
30
,
301
(
1941
).
99.
J. F.
Drake
and
R. G.
Kleva
,
Phys. Rev. Lett.
66
,
1458
(
1991
).
100.
G.
Valori
,
D.
Grasso
, and
H. J.
de Blank
,
Phys. Plasmas
7
,
178
(
2000
).
101.
D.
Borgogno
,
D.
Grasso
,
F.
Porcelli
,
F.
Califano
,
F.
Pegoraro
, and
D.
Farina
,
Phys. Plasmas
12
,
032309
(
2005
).
102.
G. G.
Plunk
,
S. C.
Cowley
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
J. Fluid Mech.
664
,
407
(
2010
).
103.
B. D.
Fried
and
S. D.
Conte
,
The Plasma Dispersion Function
(
Academic
,
New York
,
1961
).
104.
L.
Chacón
,
A. N.
Simakov
,
V. S.
Lukin
, and
A.
Zocco
,
Phys. Rev. Lett.
101
,
025003
(
2008
).
105.
T. M.
Antonsen
and
B.
Coppi
,
Phys. Lett. A
81
,
335
(
1981
).
106.
J. F.
Drake
,
J. T. M.
Antonsen
,
A. B.
Hassam
, and
N. T.
Gladd
,
Phys. Fluids
26
,
2509
(
1983
).
107.
T.-H.
Watanabe
and
H.
Sugama
,
Phys. Plasmas
11
,
1476
(
2004
).
108.
It is probably also essential, for a similar reason, that the model be three-dimensional; restriction to exact two-dimensionality imposes many additional conservation laws (see Appendix  A).
109.
It can also be thought to describe the nonlinear situation, rather than the linearized one, if Eq. (98) is first transformed into the Lagragian frame moving with the plasma and the parallel coordinate measured along the exact field line. This, however, is not an essential point as the phase mixing mechanism we are considering is fundamentally linear.
110.
The spectrum with the same m dependence as Eq. (105) was first derived in Ref. 107 for electrostatic ITG turbulence in tokamaks, although, unlike those authors, we have not invoked any nonlinear dynamics in its derivation.
111.
Note, however, the claim in Ref. 54 that the inclusion of electron kinetics alleviates somewhat the problem of formation of singularities in their 2D Hamiltonian fluid-kinetic model.
112.
This reduction is accomplished by setting the electron density gradient 1/a and, therefore, ω*=kycTe/eB0a to zero in all of their equations except Eq. (25), where (ω*/ω)2/βp=de2/2δ2, because the density gradient in ω* cancels with the one in βp=(4πn0eT0e/B02)Ls2/a2.
You do not currently have access to this content.