This paper addresses the problem of aftercavity interaction in gyrotrons. The term “aftercavity interaction” is used for the cyclotron resonance interaction between electrons in a spent beam exiting the microwave cavity and traveling electromagnetic waves propagating from the cavity exit into the output part of a gyrotron. Aftercavity interaction may reduce the interaction efficiency by several percent and spoil the energy distribution of spent electrons, thus reducing the possibility of efficient utilization of depressed collectors. We have used a simple theory to find conditions resulting in the reduction of this effect. In particular, we have shown that both the axial waveguide wall profile and magnetic field distribution should be modified in order to weaken the effect of aftercavity interaction. We verified results of our simple analysis with advanced simulations and demonstrated that they are in good agreement. Result of these studies can be beneficial for the gyrotron efficiency enhancement.

1.
R. W.
Callis
,
W. P.
Cary
,
S.
Chu
,
J. L.
Doane
,
R. A.
Ellis
,
K.
Felch
,
Y. A.
Gorelov
,
H. J.
Grunloh
,
J.
Hosea
,
K.
Kajiwara
,
J.
Lohr
,
T. C.
Luce
,
J. J.
Peavy
,
R. I.
Pinsker
,
D.
Ponce
,
R.
Prater
,
M.
Shapiro
,
R. J.
Temkin
, and
J. F.
Tooker
,
Nucl. Fusion
43
,
1501
(
2003
).
2.
V.
Erckmann
,
P.
Brand
,
H.
Braune
,
G.
Dammertz
,
G.
Gantenbein
,
W.
Kasparek
,
H. P.
Laqua
,
H.
Maassberg
,
N. B.
Marushchenko
,
G.
Michel
,
M.
Thumm
,
Y.
Turkin
,
M.
Weissgerber
,
A.
Weller
,
W7-X ECRH Team at IPP Greifswald
,
W7-X ECRH Team at FZK Karlsruhe
, and
W7-X ECRH Team at IPF Stuttgart
,
Fusion Sci. Technol.
52
,
291
(
2007
).
3.
M.
Makowski
,
IEEE Trans. Plasma Sci.
24
,
1023
(
1996
).
4.
K.
Sakamoto
,
M.
Tsuneoka
,
A.
Kasugai
,
T.
Imai
,
T.
Kariya
,
K.
Hayashi
, and
Y.
Mitsunaka
,
Phys. Rev. Lett.
73
,
3532
(
1994
).
5.
A.
Singh
,
S.
Rajapatirana
,
Y.
Men
,
V. L.
Granatstein
,
R. L.
Ives
, and
A. J.
Antolak
,
IEEE Trans. Plasma Sci.
27
,
490
(
1999
).
6.
V. E.
Zapevalov
and
M. A.
Moiseev
,
Radiophys. Quantum Electron.
47
,
520
(
2004
).
7.
N. A.
Zavolsky
,
V. E.
Zapevalov
, and
M. A.
Moiseev
,
Radiophys. Quantum Electron.
49
,
108
(
2006
).
8.
E. M.
Choi
,
M. A.
Shapiro
,
J. R.
Sirigiri
, and
R. J.
Temkin
,
Phys. Plasmas
14
,
093302
(
2007
).
9.
O. V.
Sinitsyn
and
G. S.
Nusinovich
,
Phys. Plasmas
16
,
023101
(
2009
).
10.
M.
Botton
,
T. M.
Antonsen
, Jr.
,
B.
Levush
,
K. T.
Nguyen
, and
A. N.
Vlasov
,
IEEE Trans. Plasma Sci.
26
,
882
(
1998
).
11.
H.
Jory
,
M.
Blank
,
P.
Borchard
,
P.
Cahalan
,
S.
Cauffman
,
T. S.
Chu
, and
K.
Felch
,
AIP Conf. Proc.
807
,
180
(
2006
).
12.
G. S.
Nusinovich
,
Introduction to the Physics of Gyrotrons
(
Johns Hopkins University Press
,
Baltimore
,
2004
).
13.
G. G.
Denisov
,
A. N.
Kuftin
,
V. I.
Malygin
,
N. P.
Venediktov
,
D. V.
Vinogradov
, and
V. E.
Zapevalov
,
Int. J. Electron.
72
,
1079
(
1992
).
You do not currently have access to this content.