Plasma enhanced techniques are widely used for synthesis of carbon nanostructures. The primary focus of this paper is to summarize recent experimental and theoretical advances in understanding of single-wall carbon nanotube (SWNT) synthesis mechanism in arcs, and to describe methods of controlling arc plasma parameters. Fundamental issues related to synthesis of SWNTs, which is a relationship between plasma parameters and SWNT characteristics are considered. It is shown that characteristics of synthesized SWNTs can be altered by varying plasma parameters. Effects of electrical and magnetic fields applied during SWNT synthesis in arc plasma are explored. Magnetic field has a profound effect on the diameter, chirality, and length of a SWNT synthesized in the arc plasma. An average length of SWNT increases by a factor of 2 in discharge with magnetic field and an amount of long nanotubes with the length above 5μm also increases in comparison with that observed in the discharge without a magnetic field. In addition, synthesis of a few-layer graphene in a magnetic field presence is discovered. A coupled model of plasma-electrode phenomena in atmospheric-pressure anodic arc in helium is described. Calculations indicate that substantial fraction of the current at the cathode is conducted by ions (0.7–0.9 of the total current). It is shown that nonmonotonic behavior of the arc current-voltage characteristic can be reproduced taking into account the experimentally observed dependence of the arc radius on arc current.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
W. H.
Chiang
and
R. M.
Sankaran
,
Nature Mater.
8
,
882
(
2009
).
3.
A.
Buldum
and
J. P.
Lu
,
Phys. Rev. Lett.
91
,
236801
(
2003
).
4.
H.
Gao
,
X. B.
Wu
,
Ji. T.
Li
,
G. T.
Wu
,
J. Y.
Lin
,
K.
Wu
, and
D. S.
Xu
,
Appl. Phys. Lett.
83
,
3389
(
2003
).
5.
J.
Kong
,
N. R.
Franklin
,
C.
Zhou
,
M. G.
Chapline
,
S.
Peng
,
K.
Cho
, and
H.
Dai
,
Science
287
,
622
(
2000
).
6.
7.
8.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
9.
Y.
Zhang
,
Y. -W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
4235
(
2005
).
10.
S.
Pisana
,
M.
Lazzer
,
C.
Casiraghi
,
K. S.
Novoselov
,
A. K.
Geim
,
A. C.
Ferrari
, and
F.
Mauri
,
Nature Mater.
6
,
198
(
2007
).
11.
D. V.
Kosynkin
,
A. L.
Higginbotham
,
A.
Sinitskii
,
J. R.
Lomeda
,
A.
Dimiev
,
B. K.
Price
, and
J. M.
Tour
,
Nature (London)
458
,
872
(
2009
).
12.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P. C.
Eklund
,
Science of Fullerence and Carbon Nanotubes
(
Academic
,
New York
,
1996
).
13.
A.
Gupta
,
G.
Chen
,
P.
Joshi
,
S.
Tadigadapa
, and
P. C.
Eklund
,
Nano Lett.
6
,
2667
(
2006
).
14.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
15.
E. V.
Rutkov
and
A. Ya.
Tontegode
,
Surf. Sci.
161
,
373
(
1985
).
16.
C.
Berger
,
Z.
Song
,
T.
Li
,
X.
Li
,
A. Y.
Ogbazghi
,
R.
Feng
,
Z.
Dai
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
J. Phys. Chem. B
108
,
19912
(
2004
).
17.
T.
Ohta
,
F.
El Gabaly
,
A.
Bostwick
,
J. L.
McChesney
,
K. V.
Emtsev
,
A. K.
Schmid
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
,
New J. Phys.
10
,
023034
(
2008
).
18.
K. S.
Subrahmanyam
,
L. S.
Panchakarla
,
A.
Govindaraj
, and
C. N. R.
Rao
,
J. Phys. Chem. C
113
,
4257
(
2009
).
19.
S.
Karmakar
,
N. V.
Kulkarni
,
A. B.
Nawale
,
N. P.
Lalla
,
R.
Mishra
,
V. G.
Sathe
,
S. V.
Bhoraskar
, and
A. K.
Das
,
J. Phys. D
42
,
115201
(
2009
).
20.
Z.
Huang
,
J.
Xu
,
Z.
Ren
,
J.
Wang
,
M.
Siegal
, and
P.
Provencio
,
Appl. Phys. Lett.
73
,
3845
(
1998
).
21.
U.
Cvelbar
,
B.
Markoli
,
I.
Poberaj
,
A.
Zalar
,
L.
Kosec
, and
S.
Spaić
,
Appl. Surf. Sci.
253
,
1861
(
2006
).
22.
F. J.
Gordillo-Vázquez
,
V. J.
Herrero
, and
I.
Tanarro
,
Chem. Vap. Deposition
13
,
267
(
2007
).
23.
C.
Journet
,
W. K.
Maser
,
P.
Bernier
,
A.
Loiseau
,
M. L.
de la Chapelle
,
S.
Lefrant
,
P.
Deniard
,
R.
Lee
, and
J. E.
Fischer
,
Nature (London)
388
,
756
(
1997
).
24.
K.
Ostrikov
,
Rev. Mod. Phys.
77
,
489
(
2005
).
25.
Carbon Nanotubes: Science and Applications
, edited by
M.
Meyyappan
(
CRC
,
Boca Raton
,
2004
).
26.
I.
Stepanek
,
G.
Maurin
,
P.
Bernier
,
J.
Gavillet
,
A.
Loiseau
,
R.
Edwards
, and
O.
Jaschinski
,
Chem. Phys. Lett.
331
,
125
(
2000
).
27.
Y.
Okawa
,
S.
Kitamura
, and
Y.
Iseki
,
Proceedings of the Ninth Spacecraft Charging Technology Conference
, Japan, April
2005
(unpublished).
28.
H.
Takikawa
,
M.
Yatsuki
,
T.
Sakakibara
, and
S.
Itoh
,
J. Phys. D
33
,
826
(
2000
).
29.
I. I.
Beilis
,
IEEE Trans. Compon. Packag. Technol.
23
,
334
(
2000
).
30.
A. P.
Moravsky
,
E. M.
Wexler
, and
R. O.
Loufty
, in
Carbon Nanotubes: Science and Applications
, edited by
M.
Meyyappan
(
CRC
,
Boca Raton
,
2004
).
31.
S.
Farhat
,
M. L.
De La Chapelle
,
A.
Loiseau
,
C. D.
Scott
,
S.
Lefrant
,
C.
Journet
, and
P.
Bernier
,
J. Chem. Phys.
115
,
6752
(
2001
).
32.
E. I.
Waldorff
,
A. M.
Waas
,
P. P.
Friedmann
, and
M.
Keidar
,
J. Appl. Phys.
95
,
2749
(
2004
).
33.
Y. Y.
Ando
,
X.
Zhao
,
K.
Hirahara
,
K.
Suenaga
,
S.
Bandow
, and
S.
Iijima
,
Chem. Phys. Lett.
323
,
580
(
2000
).
34.
T.
Zhao
and
Y.
Liu
,
Carbon
42
,
2765
(
2004
).
35.
I.
Levchenko
,
K.
Ostrikov
,
M.
Keidar
, and
S.
Xu
,
Appl. Phys. Lett.
89
,
033109
(
2006
).
36.
X.
Lv
,
F.
Du
,
Y.
Ma
,
Q.
Wu
, and
Y.
Chen
,
Carbon
43
,
2020
(
2005
).
37.
D.
Tang
,
L.
Sun
,
J.
Zhou
,
W.
Zhou
, and
S.
Xie
,
Carbon
43
,
2812
(
2005
).
38.
M.
Yao
,
B.
Liu
,
Y.
Zou
,
L.
Wang
,
D.
Li
,
T.
Cui
,
G.
Zou
, and
B.
Sundqvist
,
Carbon
43
,
2894
(
2005
).
39.
M.
Keidar
and
A. M.
Waas
,
Nanotechnology
15
,
1571
(
2004
).
41.
M.
Keidar
,
I. I.
Beilis
,
R. L.
Boxman
, and
S.
Goldsmith
,
J. Phys. D
29
,
1973
(
1996
).
42.
K.
Anazawa
,
K.
Shimotani
,
C.
Manabe
,
H.
Watanabe
, and
M.
Shimizu
,
Appl. Phys. Lett.
81
,
739
(
2002
).
43.
M.
Keidar
,
I.
Levchenko
,
T.
Arbel
,
M.
Alexander
,
A. M.
Waas
, and
K.
Ostrikov
,
Appl. Phys. Lett.
92
,
043129
(
2008
).
44.
M.
Keidar
,
I.
Levchenko
,
T.
Arbel
,
M.
Alexander
,
A. M.
Waas
, and
K.
Ostrikov
,
J. Appl. Phys.
103
,
094318
(
2008
).
45.
M.
Keidar
,
Y.
Raitses
,
A.
Knapp
, and
A. M.
Waas
,
Carbon
44
,
1022
(
2006
).
46.
S.
Farhat
and
C. D.
Scott
,
J. Nanosci. Nanotechnol.
6
,
1189
(
2006
).
47.
I.
Hinkov
,
J.
Grand
,
M. L.
de la Chapelle
,
S.
Farhata
,
J. B.
Clement
,
C. D.
Scott
,
L. B.
Johnson
,
P.
Nikolaev
,
V.
Pichot
, and
P.
Launois
,
J. Appl. Phys.
95
,
2029
(
2004
).
48.
E. G.
Gamaly
and
T. W.
Ebessen
,
Phys. Rev. B
52
,
2083
(
1995
).
49.
A.
Fetterman
,
Y.
Raitses
, and
M.
Keidar
,
Carbon
46
,
1322
(
2008
).
50.
A.
Shashurin
,
M.
Keidar
, and
I. I.
Beilis
,
J. Appl. Phys.
104
,
063311
(
2008
).
51.
A.
Shashurin
and
M.
Keidar
,
Carbon
46
,
1826
(
2008
).
52.
M.
Keidar
and
I. I.
Beilis
,
J. Appl. Phys.
106
,
103304
(
2009
).
53.
O.
Volotskova
,
A.
Shashurin
,
M.
Keidar
,
Y.
Raitses
,
V.
Demidov
, and
S.
Adams
,
Nanotechnology
21
,
095705
(
2010
).
54.
I. I.
Beilis
,
R. L.
Boxman
, and
S.
Goldsmith
,
Phys. Plasmas
9
,
3159
(
2002
).
55.
J. A.
Fagan
,
B. J.
Landi
,
I.
Mandelbaum
,
J. R.
Simpson
,
V.
Bajpai
,
B. J.
Bauer
,
K.
Migler
,
A. R.
Hight Walker
,
R.
Raffaelle
, and
E. K.
Hobbie
,
J. Phys. Chem. B
110
,
23801
(
2006
).
56.
I.
Levchenko
,
K.
Ostrikov
,
M.
Keidar
, and
U.
Cvelbar
,
J. Phys. D
41
,
132004
(
2008
).
57.
O.
Volotskova
,
I.
Levchenko
,
A.
Shashurin
,
Y.
Raitses
,
K.
Ostrikov
, and
M.
Keidar
, “
In situ magnetic separation of freestanding graphene and nanotubes in arc plasma
,”
Nano Lett.
(to be published).
58.
H. C.
Schniepp
,
J. -L.
Li
,
M. J.
McAllister
,
H.
Sai
,
M.
Herrera-Alonso
,
D. H.
Adamson
,
R. K.
Prudhomme
,
R.
Car
,
D. A.
Saville
, and
I. A.
Aksay
,
J. Phys. Chem. B
110
,
8535
(
2006
).
59.
M.
Keidar
and
I. I.
Beilis
On a model of nanoparticle collection by an electrical probe
,”
IEEE Trans. Plasma Sci.
(to be published).
60.
M.
Keidar
,
A. M.
Waas
,
Y.
Raitses
, and
E.
Waldorff
,
J. Nanosci. Nanotechnol.
6
,
1309
(
2006
).
You do not currently have access to this content.