In this study, a supersonic and super-Alfvénic magnetized plasma flow past a perfect-conducting cylinder was simulated based on single-fluid ideal magnetohydrodynamics to clarify the piling-up process of the magnetic field frozen in the plasma flow. Therefore, the magnetic field is assumed to be perpendicular to both the cylinder axis and the flow direction. Simulation results indicated that the cylinder continuously traps the magnetic field and an unsteady flow field is generated. Even though the drag force exerting on the cylinder is expected to continuously increase with the continuous increase in the trapped magnetic field and the shock layer, the intensity of magnetic flux density at the cylinder surface is saturated at a certain value and the drag force is also saturated. The saturated values are characterized by the Alfvén Mach number of the mainstream. Furthermore, on this flow structure the wake flow in which magnetic reconnection plays an important role was found to have a strong influence by using the pseudomagnetic reconnection in the ideal magnetohydrodynamic flow.

1.
J. R.
Spreiter
and
S. S.
Stahara
,
J. Geophys. Res., [Space Phys.]
85
,
7715
, doi:10.1029/JA085iA13p07715 (
1980
).
2.
C. C.
Wu
,
Geophys. Res. Lett.
19
,
87
, doi:10.1029/91GL03007 (
1992
).
3.
T.
Tanaka
,
J. Geophys. Res., [Space Phys.]
98
,
17251
, doi:10.1029/93JA01516 (
1993
).
4.
J. E.
McGary
and
J. D. H.
Pontius
,
J. Geophys. Res., [Space Phys.]
99
,
2289
, doi:10.1029/93JA03166 (
1994
).
5.
S.
Cable
and
R. S.
Steinolfson
,
J. Geophys. Res., [Space Phys.]
100
,
21645
, doi:10.1029/95JA02174 (
1995
).
6.
E.
Kallio
,
J. G.
Luhmann
, and
J. G.
Lyon
,
J. Geophys. Res., [Space Phys.]
103
,
4723
, doi:10.1029/97JA02862 (
1998
).
7.
Y.
Liu
,
A. F.
Nagy
,
C.
Groth
,
D. L.
DeZeeuw
, and
T. I.
Gombosi
,
Geophys. Res. Lett.
26
,
2689
, doi:10.1029/1999GL900584 (
1999
).
8.
H.
Shinagawa
and
S. W.
Bougher
,
Earth, Planets Space
51
,
55
(
1999
).
9.
10.
H. K.
Biernat
,
N. V.
Erkaev
, and
C. J.
Farrugia
,
Adv. Space Res.
28
,
833
(
2001
).
11.
Y.
Ma
,
A. F.
Nagy
,
K. C.
Hansen
,
D. L.
DeZeeuw
,
T. I.
Gombosi
, and
K. G.
Powell
,
J. Geophys. Res., [Space Phys.]
107
,
1282
, doi:10.1029/2002JA009293 (
2002
).
12.
M.
Harnett
and
M.
Winglee
,
Geophys. Res. Lett.
30
,
2074
, doi:10.1029/2003GL017852 (
2003
).
13.
J. L.
Phillips
and
D. L.
McComas
,
Space Sci. Rev.
55
,
1
(
1991
).
14.
E. M.
Harnett
and
R. M.
Winglee
,
J. Geophys. Res., [Space Phys.]
107
,
1421
, doi:10.1029/2002JA009241 (
2002
).
15.
D. L. D.
Zeeuw
,
A. F.
Nagy
, and
T. I.
Gombosi
,
J. Geophys. Res., [Space Phys.]
101
,
2547
, doi:10.1029/95JA02433 (
1996
).
16.
K.
Murawski
and
R. S.
Steinolfson
,
Planet. Space Sci.
44
,
243
(
1996
).
17.
R. M.
Zubrin
and
D. G.
Andrews
,
J. Spacecr. Rockets
28
,
197
(
1991
).
18.
K. G.
Powell
,
P. L.
Roe
,
T. J.
Linde
,
T. I.
Gombosi
, and
D. L.
Dezeeuw
,
J. Comput. Phys.
154
,
284
(
1999
).
19.
G.
Tóth
,
J. Comput. Phys.
161
,
605
(
2000
).
You do not currently have access to this content.