In wire array Z-pinches, the magnetic field configuration and the global field penetration of individual wires play a key role in the ablation plasma dynamics. Knowledge of the magnetic field configuration is necessary to understand the ablation plasma acceleration process near the wires. Two-dimensional resistive magnetohydrodynamics simulations show that a change in the global magnetic field configuration is critical to initiating inward flow of the ablation plasma. Analysis of these simulations show that the initially compressive J×B force around a wire in its vacuum field configuration undergoes a transition to a configuration in which the Lorentz force can accelerate plasma toward the array axis. This transition is achieved through a low magnetic Reynolds number diffusive flow in which the plasma and the magnetic field are decoupled. The plasma current follows the expanding plasma toward the array axis and, after traveling a critical distance scaling with the array radius divided by the wire number, the global magnetic field threads the wire core, thereby allowing J×B coronal acceleration into ablation streams.

1.
J. B.
Greenly
,
J. D.
Douglas
,
D. A.
Hammer
,
B. R.
Kusse
,
S. C.
Glidden
, and
H. D.
Sanders
,
Rev. Sci. Instrum.
79
,
073501
(
2008
).
2.
R. B.
Spielman
,
C.
Deeney
,
G. A.
Chandler
,
M. R.
Douglas
,
D. L.
Fehl
,
M. K.
Matzen
,
D. H.
McDaniel
,
T. J.
Nash
,
J. L.
Porter
,
T. W. L.
Sanford
,
J. F.
Seamen
,
W. A.
Stygar
,
K. W.
Struve
,
S. P.
Breeze
,
J. S.
McGurn
,
J. A.
Torres
,
D. M.
Zagar
,
T. L.
Gilliland
,
D. O.
Jobe
,
J. L.
McKenney
,
R. C.
Mock
,
M.
Vargas
, and
T.
Wagoner
,
Phys. Plasmas
5
,
2105
(
1998
).
3.
S. V.
Lebedev
,
F. N.
Beg
,
S. N.
Bland
,
J. P.
Chittenden
,
A. E.
Dangor
,
M. G.
Haines
,
K. H.
Kwek
,
S. A.
Pikuz
, and
T. A.
Shelkovenko
,
Phys. Plasmas
8
,
3734
(
2001
).
4.
E. M.
Waisman
,
M.
Cuneo
,
W.
Stygar
,
P.
Sasorov
, and
E.
Yu
,
Phys. Plasmas
13
,
062702
(
2006
).
5.
E. P.
Yu
,
B.
Oliver
,
D.
Sinars
,
T.
Mehlhorn
,
M.
Cuneo
,
P.
Sasorov
,
M.
Haines
, and
S.
Lebedev
,
Phys. Plasmas
14
,
022705
(
2007
).
6.
A. L.
Velikovich
,
I. V.
Sokolov
, and
A. A.
Esaulov
,
Phys. Plasmas
9
,
1366
(
2002
).
7.
V. V.
Aleksandrov
,
A. V.
Branitskii
,
G. S.
Volkov
,
E. V.
Grabovskii
,
M. V.
Zurin
,
S. L.
Nedoseev
,
G. M.
Oleinik
,
A. A.
Samokhin
, and
P. V.
Sasorov
,
Plasma Phys. Rep.
27
,
89
(
2001
).
8.
P. V.
Sasorov
,
B. V.
Oliver
,
E. P.
Yu
, and
T. A.
Mehlhorn
,
Phys. Plasmas
15
,
022702
(
2008
).
9.
J. P.
Chittenden
,
S. V.
Lebedev
,
B. V.
Oliver
,
E. P.
Yu
, and
M. E.
Cuneo
,
Phys. Plasmas
11
,
1118
(
2004
).
10.
J.
Chittenden
,
S.
Lebedev
,
S.
Bland
,
F.
Beg
, and
M.
Haines
,
Phys. Plasmas
8
,
2305
(
2001
).
11.
M.
Haines
,
IEEE Trans. Plasma Sci.
30
,
588
(
2002
).
12.
C. J.
Garasi
,
D.
Bliss
,
T.
Mehlhorn
,
B.
Oliver
,
A.
Robinson
, and
G.
Sarkisov
,
Phys. Plasmas
11
,
2729
(
2004
).
13.
J. P.
Chittenden
and
C. A.
Jennings
,
Phys. Rev. Lett.
101
,
055005
(
2008
).
14.
C.
Sack
and
H.
Schamel
,
Phys. Rep.
156
,
311
(
1987
).
15.
S. V.
Lebedev
,
F. N.
Beg
,
S. N.
Bland
,
J. P.
Chittenden
,
A. E.
Dangor
,
M. G.
Haines
,
S. A.
Pikuz
, and
T. A.
Shelkovenko
,
Phys. Rev. Lett.
85
,
98
(
2000
).
16.
C.
Deeney
and
T.
Nash
,
Phys. Plasmas
5
,
2431
(
1998
).
17.
J. P.
Chittenden
,
Phys. Plasmas
2
,
1242
(
1995
).
You do not currently have access to this content.