Eikonal, or ray tracing, methods are commonly used to estimate the propagation of radio frequency fields in plasmas. While the information gained from the rays is quite useful, an approximate solution for the fields would also be valuable, e.g., for comparison to full wave simulations. Such approximations are often difficult to perform numerically because of the special care which must be taken to correctly reconstruct the fields near reflection and focusing caustics. In this paper, we compare the standard eikonal method for approximating fields to a method based on the dynamics of wave packets. We compare the approximations resulting from these two methods to the analytical solution for a lower hybrid wave reflecting from a cutoff. The algorithm based on wave packets has the advantage that it can correctly deal with caustics, without any special treatment.

1.
J. -M.
Wersinger
,
E.
Ott
, and
J. M.
Finn
,
Phys. Fluids
21
,
2263
(
1978
).
2.
Yu. F.
Baranov
and
V. I.
Fedorov
,
Pis'ma Zh. Tekh. Fiz.
4
,
800
(
1978
)
Yu. F.
Baranov
and
V. I.
Fedorov
, [
Sov. Tech. Phys. Lett.
4
,
322
(
1978
)].
3.
M.
Brambilla
and
A.
Cardinali
,
Plasma Phys.
24
,
1187
(
1982
).
4.
P. T.
Bonoli
,
IEEE Trans. Plasma Sci.
12
,
95
(
1984
).
5.
F.
Imbeaux
and
Y.
Peysson
,
Plasma Phys. Controlled Fusion
47
,
2041
(
2005
).
6.
J. C.
Wright
,
P. T.
Bonoli
,
A. E.
Schmidt
,
C. K.
Phillips
,
E. J.
Valeo
,
R. W.
Harvey
, and
M. A.
Brambilla
,
Phys. Plasmas
16
,
072502
(
2009
).
7.
A.
Cardinali
,
L.
Morini
,
C.
Castaldo
,
R.
Cesario
, and
F.
Zonca
,
Phys. Plasmas
14
,
112506
(
2007
).
8.
V. P.
Maslov
and
M. V.
Fedoriuk
,
Semi-Classical Approximation in Quantum Mechanics
,
Mathematical Physics and Applied Mathematics
Vol.
7
(
Springer
,
New York
,
2002
).
9.
C.
Bracher
and
J. B.
Delos
,
Phys. Rev. Lett.
96
,
100404
(
2006
).
10.
S. K.
Knudson
,
J. B.
Delos
, and
B.
Bloom
,
J. Chem. Phys.
83
,
5703
(
1985
).
11.
C.
Chapman
and
H.
Keers
,
Stud. Geophys. Geod.
46
,
615
(
2002
).
12.
C. J.
Thomson
and
C. H.
Chapman
,
Geophys. J. R. Astron. Soc.
83
,
143
(
1985
).
13.
I borrow this phrase from Delos, who uses it to describe the amount of work required to properly use the Maslov methods to reconstruct fields.
14.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
New York
,
1992
).
15.
R. G.
Littlejohn
,
Phys. Rep.
138
,
193
(
1986
).
16.
Handbook of Mathematical Functions
,
Applied Mathematics Series
, edited by
M.
Abramowitz
and
I. A.
Stegun
, 9th ed. (
National Bureau of Standards
,
Washington, D.C.
,
1970
), Chap. 10.
17.
G. V.
Pereverzev
,
Phys. Plasmas
5
,
3529
(
1998
).
18.
O.
Maj
,
G. V.
Pereverzev
, and
E.
Poli
,
Phys. Plasmas
16
,
062105
(
2009
).
19.
M. A.
Alonso
and
G. W.
Forbes
,
J. Math. Phys.
40
,
1699
(
1999
).
20.
21.
S. W.
McDonald
,
Phys. Rev. Lett.
54
,
1211
(
1985
).
22.
C. J.
Thomson
,
Geophys. J. Int.
144
,
320
(
2001
).
23.
R.
Littlejohn
and
J.
Robbins
,
Phys. Rev. A
36
,
2953
(
1987
).
24.
R. G.
Littlejohn
,
Phys. Rev. Lett.
56
,
2000
(
1986
).
25.
The notation in this equation is meant to be interpreted as a tensor valued derivative: [D]i,j=ξiξjD, where ξi(i=1,,2n) are the 2n-dimensional phase space coordinates.
26.
F. M.
Dopico
and
C. R.
Johnson
,
SIAM J. Matrix Anal. Appl.
31
,
650
(
2009
).
You do not currently have access to this content.