The temporal dynamics of the quantum Zakharov equations in one spatial dimension, which describes the nonlinear interaction of quantum Langmuir waves and quantum ion-acoustic waves, is revisited by considering their solution as a superposition of three interacting wave modes in Fourier space. Previous results in the literature are modified and rectified. Periodic, chaotic, and hyperchaotic behaviors of the Fourier-mode amplitudes are identified by the analysis of Lyapunov exponent spectra and the power spectrum. The periodic route to chaos is explained through a one-parameter bifurcation analysis. The system is shown to be destabilized via a supercritical Hopf-bifurcation. The adiabatic limits of the fully spatiotemporal and reduced systems are compared from the viewpoint of integrability properties.

1.
V. E.
Zakharov
,
Sov. Phys. JETP
35
,
908
(
1972
).
2.
L. G.
Garcia
,
F.
Haas
,
L. P. L.
de Oliveira
, and
J.
Goedert
,
Phys. Plasmas
12
,
012302
(
2005
).
3.
M.
Marklund
,
Phys. Plasmas
12
,
082110
(
2005
).
4.
F.
Haas
,
Phys. Plasmas
14
,
042309
(
2007
).
5.
A. P.
Misra
,
D.
Ghosh
, and
A. R.
Chowdhury
,
Phys. Lett. A
372
,
1469
(
2008
).
6.
A. P.
Misra
and
P. K.
Shukla
,
Phys. Rev. E
79
,
056401
(
2009
).
7.
F.
Haas
and
P. K.
Shukla
,
Phys. Rev. E
79
,
066402
(
2009
).
8.
G.
Simpson
,
C.
Sulem
, and
P. L.
Sulem
,
Phys. Rev. E
80
,
056405
(
2009
).
9.
X. Y.
Tang
and
P. K.
Shukla
,
Phys. Scr.
76
,
665
(
2007
).
10.
M. A.
Abdou
and
E. M.
Abulwafa
,
Z. Naturforsch, A: Phys. Sci.
63a
,
646
(
2008
).
11.
S. A.
El-Wakil
and
M. A.
Abdou
,
Nonlinear Anal. Theory, Methods Appl.
68
,
235
(
2008
).
12.
R. P.
Sharma
,
K.
Batra
, and
A. D.
Verga
,
Phys. Plasmas
12
,
022311
(
2005
).
13.
K.
Batra
,
R. P.
Sharma
, and
A. D.
Verga
,
J. Plasma Phys.
72
,
671
(
2006
).
14.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
,
Physica D
16
,
285
(
1985
).
15.
For numerical computation of the Lyapunov exponents, we have used the guideline program by
J. C.
Sprott
in http://sprott.physics.wisc.edu/chaos/lespec.htm.
16.
A. S.
Pikovskii
,
Radiophys. Quantum Electron.
29
,
1438
(
1986
).
17.
The MATLAB codes used to compute the amplitude and the phase are as follows: h=fft(g); m=abs(h); p=unwrap(angle(h)); % Plot the magnitude and phase; f=(0:length(g)-1)100/length(h); subplot(2,1,1), plot(f,m); ylabel(’Abs. Magnitude’), grid on; subplot(2,1,2), plot(f,p180/pi); ylabel(’Phase [Degrees]’), grid on; xlabel(’Frequency [Hertz]’).
18.
S.
Kodba
,
M.
Perc
, and
M.
Marhl
,
Eur. J. Phys.
26
,
205
(
2005
).
You do not currently have access to this content.