A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al, Phys. Plasmas9, 1277 (2002)], GATO [L. Bernard et al, Comput. Phys. Commun.24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al., J. Comput. Phys.195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=120). The results use the compressible MHD model and depend on a precise representation of “ideal-like” and “vacuumlike” or “halo” regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

1.
H.
Zohm
,
Plasma Phys. Controlled Fusion
38
,
105
(
1996
).
2.
J.
Connor
,
Plasma Phys. Controlled Fusion
40
,
531
(
1998
).
4.
J.
Connor
,
Plasma Phys. Controlled Fusion
40
,
191
(
1998
).
5.
T.
Hender
,
J.
Wesley
,
J.
Bialek
,
A.
Bondeson
,
A.
Boozer
,
R. J.
Buttery
,
A.
Garofalo
,
T. P.
Goodman
,
R. S.
Granetz
,
Y.
Gribov
,
O.
Gruber
,
M.
Gryaznevich
,
G.
Giruzzi
,
S.
Günter
,
N.
Hayashi
,
P.
Helander
,
C.
Hegna
,
D. F.
Howell
,
D. A.
Humphreys
,
G. T. A.
Huysmans
,
A.
Hyatt
,
A.
Isayama
,
S. C.
Jardin
,
Y.
Kawano
,
A.
Kellman
,
C.
Kessel
,
H. R.
Koslowski
,
R. J. L.
Haye
,
E.
Lazzaro
,
Y. Q.
Liu
,
V.
Lukash
,
J.
Manickam
,
S.
Medvedev
,
V.
Mertens
,
S.
Mirnov
,
Y.
Nakamura
,
G.
Navratil
,
M.
Okabayashi
,
T.
Ozeki
,
R.
Paccagnella
,
G.
Pautasso
,
F.
Porcelli
,
V.
Pustovitov
,
V.
Riccardo
,
M.
Sato
,
O.
Sauter
,
M.
Schaffer
,
M.
Shimada
,
P.
Sonato
,
E. J.
Strait
,
M.
Sugihara
,
M.
Takechi
,
A. D.
Turnbull
,
E.
Westerhof
,
D.
Whyte
,
R.
Yoshino
,
H.
Zohm
, and the
D. ITPA MHD and M. Group
,
Nucl. Fusion
47
,
S128
(
2007
).
6.
H. R.
Wilson
,
P. B.
Snyder
,
G. T. A.
Huysmans
, and
R. L.
Miller
,
Phys. Plasmas
9
,
1277
(
2002
).
7.
P. B.
Snyder
,
H. R.
Wilson
,
J. R.
Ferron
,
L. L.
Lao
,
A. W.
Leonard
,
T. H.
Osborne
,
A. D.
Turnbull
,
D.
Mossessian
,
M.
Murakami
, and
X. Q.
Xu
,
Phys. Plasmas
9
,
2037
(
2002
).
8.
P. B.
Snyder
,
K. H.
Burrell
,
H. R.
Wilson
,
M. S.
Chu
,
M. E.
Fenstermacher
,
A. W.
Leonard
,
R. A.
Moyer
,
T. H.
Osborne
,
M.
Umansky
,
W. P.
West
, and
X. Q.
Xu
,
Nucl. Fusion
47
,
961
(
2007
).
9.
L.
Bernard
,
F.
Helton
, and
R.
Moore
,
Comput. Phys. Commun.
24
,
377
(
1981
).
10.
L.
Lao
,
Y.
Kamada
,
T.
Oikawa
,
L.
Baylor
, and
K.
Burrell
,
Nucl. Fusion
41
,
295
(
2001
).
11.
A. D.
Turnbull
,
E. J.
Strait
,
W. W.
Heidbrink
,
M. S.
Chu
,
H. H.
Duong
,
J. M.
Greene
,
L. L.
Lao
,
T. S.
Taylor
, and
S. J.
Thompson
,
Phys. Fluids B
5
,
2546
(
1993
).
12.
M. N.
Rosenbluth
,
J.
Hogan
,
D.
Boucher
,
A.
Bondeson
,
P.
Barabaschi
,
B.
Coppi
,
L.
Degtyarev
,
S.
Haney
,
J.
Goedbloed
,
T.
Hender
,
H. A.
Holties
,
G. T. A.
Huysmans
,
W.
Kerner
,
J.
Manickam
,
A. A.
Martynov
,
D. A.
Monticello
,
T.
Ozeki
,
L. D.
Pearlstein
,
F.
Perkins
,
A.
Pletzer
,
F.
Porcelli
,
P. H.
Rebut
,
S.
Tokuda
,
A. D.
Turnbull
,
L.
Villard
, and
J.
Wesley
,
International Conference on Plasma Physics Controlled Nuclear Fusion Research
,
1994
(unpublished), Vol.
2
, p.
517
.
13.
C. R.
Sovinec
,
A. H.
Glasser
,
T. A.
Gianakon
,
D. C.
Barnes
,
R. A.
Nevel
,
S. E.
Kruger
,
S. J.
Plimpton
,
A.
Tarditi
,
M. S.
Chu
, and the
NIMROD Team
,
J. Comput. Phys.
195
,
355
(
2004
).
14.
M. F. F.
Nave
,
P.
Smeulders
,
T.
Hender
,
P.
Lomas
,
B.
Alper
,
P.
Bak
,
B.
Balet
,
J.
Christiansen
,
S.
Clement
,
H.
De Eshc
,
N.
Hawkes
,
G.
Huysmans
,
T.
Jones
,
R.
Konig
,
K.
Lawson
,
J.
Lingertat
,
A.
Maas
,
F.
Marcus
,
D.
O’Brien
,
A.
Rookes
,
R.
Sartori
,
M.
Stamp
,
B.
Schunke
,
P.
Thomas
, and
K.
Thomsen
,
Nucl. Fusion
37
,
809
(
1997
).
15.
C. C.
Hegna
,
J. W.
Connor
,
R. J.
Hastie
, and
H. R.
Wilson
,
Phys. Plasmas
3
,
584
(
1996
).
16.
A. Y.
Pankin
,
I.
Voitsekhovitch
,
G.
Bateman
,
A.
Dnestrovski
,
G.
Janeschitz
,
M.
Murakami
,
T.
Osborne
,
A. H.
Kritz
,
T.
Onjun
,
G. W.
Pacher
, and
H. D.
Pacher
,
Plasma Phys. Controlled Fusion
47
,
483
(
2005
).
17.
A. Y.
Pankin
,
G.
Bateman
,
D. P.
Brennan
,
D. D.
Schnack
,
P. B.
Snyder
,
I.
Voitsekhovitch
,
A. H.
Kritz
,
G.
Janeschitz
,
S.
Kruger
,
T.
Onjun
,
G. W.
Pacher
, and
H. D.
Pacher
,
Nucl. Fusion
46
,
403
(
2006
).
18.
C.
Sovinec
,
A.
Pankin
,
S.
Kruger
,
D.
Brennan
,
P.
Snyder
,
D.
Schnack
,
E.
Held
,
D.
Barnes
,
G.
Bateman
,
A.
Kritz
,
S.
Jardin
, and
J.
Breslau
,
Proceedings of the 21st International Conference on Fusion Energy
, Chengdu, China,
2006
(
IAEA
,
Vienna
,
2006
), TH/P8–3, pp.
1
8
.
19.
R. L.
Miller
and
J. W. V.
Dam
,
Nucl. Fusion
27
,
2101
(
1987
).
20.
L.
Lao
,
H. S.
John
,
R.
Stambaugh
,
A.
Kellman
, and
W.
Pfeiffer
,
Nucl. Fusion
25
,
1611
(
1985
).
21.
P. B.
Snyder
,
N.
Aiba
,
M.
Beurskens
,
R. J.
Groebner
,
L. D.
Horton
,
A. E.
Hubbard
,
J. W.
Hughes
,
G. T. A.
Huysmans
,
Y.
Kamada
,
A.
Kirk
,
C.
Konz
,
A. W.
Leonard
,
J.
L’onnroth
,
C. F.
Maggi
,
R.
Maingi
,
T. H.
Osborne
,
N.
Oyama
,
A.
Pankin
,
S.
Saarelma
,
G.
Saibene
,
J. L.
Terry
,
A. D.
Turnbull
,
H.
Urano
, and
H. R.
Wilson
,
Nucl. Fusion
49
,
085035
(
2009
).
22.
J.
DeLucia
,
S.
Jardin
, and
A.
Todd
,
J. Comput. Phys.
37
,
183
(
1980
).
23.
R.
Gruber
and
J.
Rappaz
,
Finite Element Methods in Linear Ideal Magnetohydrodynamics
(
Springer-Verlag
,
Berlin
,
1985
).
24.
S. E.
Kruger
,
D. D.
Schnack
, and
C. R.
Sovinec
,
Phys. Plasmas
12
,
056113
(
2005
).
25.
D. P.
Brennan
,
S. E.
Kruger
,
D. D.
Schnack
,
C. R.
Sovinec
, and
A.
Pankin
,
J. Phys.: Conf. Ser.
46
,
63
(
2006
).
26.
J.
Connor
,
R. J.
Hastie
, and
J. B.
Taylor
,
Proc. R. Soc. London, Ser. A
365
,
1
(
1979
).
27.
P.
Zhu
and
C. C.
Hegna
,
Phys. Plasmas
15
,
092306
(
2008
).
28.
P.
Zhu
,
C. C.
Hegna
, and
C. R.
Sovinec
,
Phys. Rev. Lett.
102
,
235003
(
2009
).
You do not currently have access to this content.