In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al, Phys. Plasmas15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

1.
P. D.
Mininni
,
D. O.
Gómez
, and
S. M.
Mahajan
,
Astrophys. J.
584
,
1120
(
2003
).
2.
F.
Mozer
,
S.
Bale
, and
T. D.
Phan
,
Phys. Rev. Lett.
89
,
015002
(
2002
).
3.
D.
Smith
,
S.
Ghosh
,
P.
Dmitruk
, and
W. H.
Matthaeus
,
Geophys. Res. Lett.
31
,
L02805
(
2004
).
4.
L. F.
Morales
,
S.
Dasso
, and
D. O.
Gómez
,
J. Geophys. Res.
110
,
A04204
(
2005
).
5.
M.
Wardle
,
Mon. Not. R. Astron. Soc.
303
,
239
(
1999
).
6.
S. A.
Balbus
and
C.
Terquem
,
Astrophys. J.
552
,
235
(
2001
).
7.
W. H.
Matthaeus
,
P.
Dmitruk
,
D.
Smith
,
S.
Ghosh
, and
S.
Ounghton
,
Geophys. Res. Lett.
30
,
2104
(
2003
).
8.
P. D.
Mininni
,
D. O.
Gómez
, and
S. M.
Mahajan
,
Astrophys. J.
619
,
1019
(
2005
).
9.
S.
Galtier
,
J. Plasma Phys.
72
,
721
(
2006
).
10.
P.
Dmitruk
and
W. H.
Matthaeus
,
Phys. Plasmas
13
,
042307
(
2006
).
11.
H. R.
Strauss
,
Phys. Fluids
19
,
134
(
1976
).
12.
D. C.
Montgomery
,
Phys. Scr., T
1982
,
83
(
1982
).
13.
G. P.
Zank
and
W. H.
Matthaeus
,
J. Plasma Phys.
48
,
85
(
1992
).
14.
A. A.
van Ballegooijen
,
Astrophys. J.
311
,
1001
(
1986
).
15.
D. W.
Longcope
and
R. N.
Sudan
,
Astrophys. J.
437
,
491
(
1994
).
16.
D. L.
Hendrix
and
G.
van Hoven
,
Astrophys. J.
467
,
887
(
1996
).
17.
L.
Milano
,
P.
Dmitruk
,
C. H.
Mandrini
,
D. O.
Gómez
, and
P.
Demoulin
,
Astrophys. J.
521
,
889
(
1999
).
18.
D. O.
Gómez
and
C.
Ferro Fontán
,
Astrophys. J.
394
,
662
(
1992
).
19.
P.
Dmitruk
and
D. O.
Gómez
,
Astrophys. J. Lett.
527
,
L63
(
1999
).
20.
P.
Dmitruk
,
D. O.
Gómez
, and
W. H.
Matthaeus
,
Phys. Plasmas
10
,
3584
(
2003
).
21.
S.
Oughton
,
P.
Dmitruk
, and
W. H.
Matthaeus
,
Phys. Plasmas
11
,
2214
(
2004
).
22.
P.
Dmitruk
,
W. H.
Matthaeus
, and
S.
Oughton
,
Phys. Plasmas
12
,
112304
(
2005
).
23.
D. O.
Gómez
,
S. M.
Mahajan
, and
P.
Dmitruk
,
Phys. Plasmas
15
,
102303
(
2008
).
24.
N. H.
Bian
and
D.
Tsiklauri
,
Phys. Plasmas
16
,
064503
(
2009
).
25.
S.
Ghosh
,
M.
Hossain
, and
W. H.
Matthaeus
,
Comput. Phys. Commun.
74
,
18
(
1993
).
26.
B. B.
Kadomtsev
and
O. P.
Pogutse
,
Sov. Phys. JETP
38
,
283
(
1974
).
You do not currently have access to this content.