Using a generalized hydrodynamic (GH) model, the growth rate spectra of Kelvin–Helmholtz (KH) instability has been obtained analytically for a step shear profile in strongly coupled Yukawa liquids. The class of shear flows studied is assumed to be incompressible in nature. The growth rate spectra calculated exhibit viscous damping at high mode numbers, destabilization at stronger coupling, and in the limit τm(viscoelasticrelaxationtime)0, reduce to the regular Navier–Stokes growth rate spectra. A direct comparison is made with previous molecular dynamics (MD) simulations [Ashwin J. and R. Ganesh, Phys. Rev. Lett.104, 215003 (2010)] of KH instability. We find that for a given value of Reynolds number R and coupling parameter 1<Γ<100, the GH and MD growth rates are in a qualitative agreement. The inclusion of the effect of shear heating as an effective coupling parameter Γe appears to improve the quantitative comparison as well.

1.
Strongly Coupled Coulomb Systems
, edited by
G. J.
Kalman
,
M. P.
Rommel
, and
K. B.
Blagoev
(
Plenum
,
New York
,
1998
).
2.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
,
Phys. Rev. Lett.
73
,
652
(
1994
).
3.
J. H.
Chu
and
I.
Lin
,
Phys. Rev. Lett.
72
,
4009
(
1994
).
4.
H. M.
Thomas
and
G.
Morfill
,
Nature (London)
379
,
806
(
1996
).
5.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
6.
S. A.
Khrapak
,
A. V.
Ivlev
, and
G. E.
Morfill
,
Phys. Rev. E
70
,
056405
(
2004
).
7.
G. E.
Morfill
,
M.
Rubin-Zuzic
,
H.
Rothermel
,
A. V.
Ivlev
,
B. A.
Klumov
,
H. M.
Thomas
,
U.
Konopka
, and
V.
Steinberg
,
Phys. Rev. Lett.
92
,
175004
(
2004
).
8.
V.
Nosenko
and
J.
Goree
,
Phys. Rev. Lett.
93
,
155004
(
2004
).
9.
N.
D’Angelo
and
B.
Song
,
Planet. Space Sci.
38
,
1577
(
1990
).
10.
Q. Z.
Luo
,
N.
D’Angelo
, and
R. L.
Merlino
,
Phys. Plasmas
8
,
31
(
2001
).
11.
G. T.
Birk
and
H.
Wiechen
,
Phys. Plasmas
9
,
964
(
2002
).
12.
D. C.
Montgomery
and
D. A.
Tidman
,
Plasma Kinetic Theory
(
McGraw-Hill
,
New York
,
1964
).
13.
S.
Ichimaru
,
Basic Principles of Plasma Physics: A Statistical Approach
(
Benjamin
,
New York
,
1964
).
14.
M. A.
Berkovsky
,
Phys. Lett. A
166
,
365
(
1992
).
15.
S.
Ichimaru
,
H.
Iyetomi
, and
S.
Tanaka
,
Phys. Rep.
149
,
91
(
1987
).
16.
P. K.
Kaw
and
A.
Sen
,
Phys. Plasmas
5
,
3552
(
1998
).
17.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
18.
J.
Pramanik
,
G.
Prasad
,
A.
Sen
, and
P. K.
Kaw
,
Phys. Rev. Lett.
88
,
175001
(
2002
).
19.
M. S.
Murillo
,
Phys. Rev. Lett.
85
,
2514
(
2000
).
20.
Ashwin
J.
and
R.
Ganesh
,
Phys. Rev. Lett.
104
,
215003
(
2010
).
21.
M.
Rosenberg
and
G.
Kalman
,
Phys. Rev. E
56
,
7166
(
1997
).
22.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
,
J. Chem. Phys.
105
,
7641
(
1996
).
23.
24.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, 9th ed. (
Dover
,
New York
,
1964
);
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, 10th ed. (
Dover
,
New York
,
1964
).
25.
L. D.
Landau
and
E. M.
Lifschitz
,
Fluid Mechanics
,
Course of Theoretical Physics
Vol.
6
, 2nd ed., edited by
L. D.
Landau
and
E. M.
Lifshitz
(
Elsevier
,
New York
,
2007
).
26.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
London
,
1995
).
27.
V.
Nosenko
,
S.
Zhdanov
,
A. V.
Ivlev
,
G.
Morfill
,
J.
Goree
, and
A.
Piel
,
Phys. Rev. Lett.
100
,
025003
(
2008
).
28.
Y. I.
Frenkel
,
Kinetic Theory of Liquids
(
Clarendon
,
Oxford
,
1946
).
You do not currently have access to this content.