Tokamak experiments operate with a rotating plasma, with toroidal velocity which can be driven externally but can also arise spontaneously. In the frame that corotates with the plasma, the effects of the centrifugal force are felt through a centrifugal drift and an enhanced mirror force [Peeters et al, Phys. Plasmas16, 042310 (2009)]. These inertial terms become important in the case of strong rotation, as is common in spherical devices, and are also important for heavy impurity ions even at small toroidal velocities. In this work, the first gyrokinetic simulations including the centrifugal force in a strongly rotating plasma are presented. The enhanced mirror force redistributes density over a flux surface and modifies the trapping condition, destabilizing trapped electron modes. At intermediate scales this can result in promotion of the trapped electron mode over the ion temperature gradient (ITG) mode as the dominant instability, which under marginal conditions could result in an enhanced electron heat flux. The centrifugal drift acts to damp the residual zonal flow of the geoacoustic mode, while its frequency is increased. For nonlinear ITG dominated turbulence, increased trapped electron drive and reduced zonal flow lead to an increase in ion heat diffusivity if the increased rotation is not accompanied by rotational shear stabilization. An increased fraction of slow trapped electrons enhances the convective particle pinch, leading to an increase in the steady state density gradient with strong rotation. Linear ITG mode results show an increased pinch of heavy trace impurities due to their strong centrifugal trapping.

1.
H.
Biglari
,
P. H.
Diamond
, and
P. W.
Terry
,
Phys. Fluids B
2
,
1
(
1990
).
2.
R. C.
Wolf
,
Plasma Phys. Controlled Fusion
45
,
R1
(
2003
).
3.
A.
Bondeson
and
D. J.
Ward
,
Phys. Rev. Lett.
72
,
2709
(
1994
).
4.
L. -G.
Eriksson
,
E.
Righi
, and
K. -D.
Zastrow
,
Plasma Phys. Controlled Fusion
39
,
27
(
1997
).
5.
J.
Rice
,
A.
Ince-Cushman
,
J.
deGrassie
,
L. -G.
Eriksson
,
Y.
Sakamoto
,
A.
Scarabosio
,
A.
Bortolon
,
K.
Burrell
,
B.
Duval
,
C.
Fenzi-Bonizec
,
M.
Greenwald
,
R.
Groebner
,
G.
Hoang
,
Y.
Koide
,
E.
Marmar
,
A.
Pochelon
, and
Y.
Podpaly
,
Nucl. Fusion
47
,
1618
(
2007
).
6.
P.
de Vries
,
M.
Hua
,
D.
McDonald
,
C.
Giroud
,
M.
Janvier
,
M.
Johnson
,
T.
Tala
, and
K.
Zastrow
,
Nucl. Fusion
48
,
065006
(
2008
).
7.
R. J.
Akers
,
J. W.
Ahn
,
G. Y.
Antar
,
L. C.
Appel
,
D.
Applegate
,
C.
Brickley
,
C.
Bunting
,
P. G.
Carolan
,
C. D.
Challis
,
N. J.
Conway
,
G. F.
Counsell
,
R. O.
Dendy
,
B.
Dudson
,
A. R.
Field
,
A.
Kirk
,
B.
Lloyd
,
H. F.
Meyer
,
A. W.
Morris
,
A.
Patel
,
C. M.
Roach
,
V.
Rohzansky
,
A.
Sykes
,
D.
Taylor
,
M. R.
Tournianski
,
M.
Valovic̆
,
H. R.
Wilson
,
K. B.
Axon
,
R. J.
Buttery
,
D.
Ciric
,
G.
Cunningham
,
J.
Dowling
,
M. R.
Dunstan
,
S. J.
Gee
,
M. P.
Gryaznevich
,
P.
Helander
,
D. L.
Keeling
,
P. J.
Knight
,
F.
Lott
,
M. J.
Loughlin
,
S. J.
Manhood
,
R.
Martin
,
G. J.
McArdle
,
M. N.
Price
,
K.
Stammers
,
J.
Storrs
,
M. J.
Walsh
,
MAST
, and
NBI Team
,
Plasma Phys. Controlled Fusion
45
,
A175
(
2003
).
8.
S.
Kaye
,
W.
Solomon
,
R.
Bell
,
B.
LeBlanc
,
F.
Levinton
,
J.
Menard
,
G.
Rewoldt
,
S.
Sabbagh
,
W.
Wang
, and
H.
Yuh
,
Nucl. Fusion
49
,
045010
(
2009
).
9.
F. L.
Hinton
and
S. K.
Wong
,
Phys. Fluids
28
,
3082
(
1985
).
10.
S. K.
Wong
,
Phys. Fluids
30
,
818
(
1987
).
11.
P. J.
Catto
,
I. B.
Bernstein
, and
M.
Tessarotto
,
Phys. Fluids
30
,
2784
(
1987
).
12.
H.
Sugama
and
W.
Horton
,
Phys. Plasmas
4
,
2215
(
1997
).
13.
R. D.
Hazeltine
and
F. L.
Hinton
,
Phys. Plasmas
12
,
102506
(
2005
).
14.
K. G.
McClements
and
R. J.
McKay
,
Plasma Phys. Controlled Fusion
51
,
115009
(
2009
).
15.
E. A.
Belli
and
J.
Candy
,
Plasma Phys. Controlled Fusion
51
,
075018
(
2009
).
16.
A.
Brizard
,
Phys. Plasmas
2
,
459
(
1995
).
17.
M.
Artun
and
W. M.
Tang
,
Phys. Plasmas
1
,
2682
(
1994
).
18.
A. G.
Peeters
,
D.
Strintzi
,
Y.
Camenen
,
C.
Angioni
,
F. J.
Casson
,
W. A.
Hornsby
, and
A. P.
Snodin
,
Phys. Plasmas
16
,
042310
(
2009
).
19.
A.
Thyagaraja
and
K.
McClements
,
Phys. Plasmas
16
,
092506
(
2009
).
20.
A. G.
Peeters
,
C.
Angioni
, and
D.
Strintzi
,
Phys. Rev. Lett.
98
,
265003
(
2007
).
21.
A. G.
Peeters
,
C.
Angioni
,
Y.
Camenen
,
F. J.
Casson
,
W. A.
Hornsby
,
A. P.
Snodin
, and
D.
Strintzi
,
Phys. Plasmas
16
,
062311
(
2009
).
22.
N.
Kluy
,
C.
Angioni
,
Y.
Camenen
, and
A. G.
Peeters
,
Phys. Plasmas
16
,
122302
(
2009
).
23.
Y.
Camenen
,
A. G.
Peeters
,
C.
Angioni
,
F. J.
Casson
,
W. A.
Hornsby
,
A. P.
Snodin
, and
D.
Strintzi
,
Phys. Plasmas
16
,
012503
(
2009
).
24.
A. G.
Peeters
and
D.
Strintzi
,
Phys. Plasmas
11
,
3748
(
2004
).
25.
A. G.
Peeters
,
Y.
Camenen
,
F. J.
Casson
,
W. A.
Hornsby
,
A. P.
Snodin
,
D.
Strintzi
, and
G.
Szepesi
,
Comput. Phys. Commun.
180
,
2650
(
2009
).
26.
A. G.
Peeters
,
C.
Angioni
, and
ASDEX Upgrade Team
,
Phys. Plasmas
12
,
072515
(
2005
).
27.
R. E.
Waltz
,
G. D.
Kerbel
,
J.
Milovich
, and
G. W.
Hammett
,
Phys. Plasmas
2
,
2408
(
1995
).
28.
T.
Dannert
and
F.
Jenko
,
Phys. Plasmas
12
,
072309
(
2005
).
29.
A. G.
Peeters
,
C.
Angioni
,
M.
Apostoliceanu
,
F.
Jenko
, and
F.
Ryter
, and
ASDEX Upgrade Team
,
Phys. Plasmas
12
,
022505
(
2005
).
30.
R. E.
Waltz
and
R. L.
Miller
,
Phys. Plasmas
6
,
4265
(
1999
).
31.
E. J.
Synakowski
,
S. H.
Batha
,
M. A.
Beer
,
M. G.
Bell
,
R. E.
Bell
,
R. V.
Budny
,
C. E.
Bush
,
P. C.
Efthimion
,
T. S.
Hahm
,
G. W.
Hammett
,
B.
LeBlanc
,
F.
Levinton
,
E.
Mazzucato
,
H.
Park
,
A. T.
Ramsey
,
G.
Schmidt
,
G.
Rewoldt
,
S. D.
Scott
,
G.
Taylor
, and
M. C.
Zarnstorff
,
Phys. Plasmas
4
,
1736
(
1997
).
32.
C.
Bourdelle
,
W.
Dorland
,
X.
Garbet
,
G. W.
Hammett
,
M.
Kotschenreuther
,
G.
Rewoldt
, and
E. J.
Synakowski
,
Phys. Plasmas
10
,
2881
(
2003
).
33.
R. E.
Waltz
,
G. D.
Kerbel
, and
J.
Milovich
,
Phys. Plasmas
1
,
2229
(
1994
).
34.
X.
Lapillonne
,
S.
Brunner
,
T.
Dannert
,
S.
Jolliet
,
A.
Marinoni
,
L.
Villard
,
T.
Görler
,
F.
Jenko
, and
F.
Merz
,
Phys. Plasmas
16
,
032308
(
2009
).
35.
C.
Angioni
and
A. G.
Peeters
,
Phys. Rev. Lett.
96
,
095003
(
2006
).
36.
C.
Angioni
,
J.
Candy
,
E.
Fable
,
M.
Maslov
,
A. G.
Peeters
,
R. E.
Waltz
, and
H.
Weisen
,
Phys. Plasmas
16
,
060702
(
2009
).
37.
Z.
Lin
,
T. S.
Hahm
,
W. W.
Lee
,
W. M.
Tang
, and
R. B.
White
,
Science
281
,
1835
(
1998
).
38.
P. H.
Diamond
,
S. -I.
Itoh
,
K.
Itoh
, and
T. S.
Hahm
,
Plasma Phys. Controlled Fusion
47
,
R35
(
2005
).
39.
A. M.
Dimits
,
G.
Bateman
,
M. A.
Beer
,
B. I.
Cohen
,
W.
Dorland
,
G. W.
Hammett
,
C.
Kim
,
J. E.
Kinsey
,
M.
Kotschenreuther
,
A. H.
Kritz
,
L. L.
Lao
,
J.
Mandrekas
,
W. M.
Nevins
,
S. E.
Parker
,
A. J.
Redd
,
D. E.
Shumaker
,
R.
Sydora
, and
J.
Weiland
,
Phys. Plasmas
7
,
969
(
2000
).
40.
M. N.
Rosenbluth
and
F. L.
Hinton
,
Phys. Rev. Lett.
80
,
724
(
1998
).
41.
J.
Candy
and
R. E.
Waltz
,
J. Comput. Phys.
186
,
545
(
2003
).
42.
J. E.
Kinsey
,
R. E.
Waltz
, and
J.
Candy
,
Phys. Plasmas
12
,
062302
(
2005
).
43.
F. J.
Casson
,
A. G.
Peeters
,
Y.
Camenen
,
W. A.
Hornsby
,
A. P.
Snodin
,
D.
Strintzi
, and
G.
Szepesi
,
Phys. Plasmas
16
,
092303
(
2009
).
44.
C. M.
Roach
,
I. G.
Abel
,
R. J.
Akers
,
W.
Arter
,
M.
Barnes
,
Y.
Camenen
,
F. J.
Casson
,
G.
Colyer
,
S. C.
Cowley
,
D.
Dickinson
,
W.
Dorland
,
A. R.
Field
,
W.
Guttenfelder
,
G. W.
Hammett
,
R. J.
Hastie
,
E.
Highcock
,
N. F.
Loureiro
,
A. G.
Peeters
,
M.
Reshko
,
S.
Saarelma
,
A. A.
Schekochihin
,
M.
Valovic
, and
H. R.
Wilson
,
Plasma Phys. Controlled Fusion
51
,
124020
(
2009
).
You do not currently have access to this content.