Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial plasma transport due to collisional processes and microturbulence-induced anomalous transport are usually considered. In addition, toroidal flow can be affected by nonaxisymmetric magnetic fields; resonant components cause localized electromagnetic toroidal torques near rational surfaces in flowing plasmas and nonresonant components induce “global” toroidal flow damping torque throughout the plasma. Also, poloidal magnetic field transients on the magnetic field diffusion time scale can influence plasma transport. Many of these processes can also produce momentum pinch and intrinsic flow effects. This paper presents a comprehensive and self-consistent description of all these effects within a fluid moment context. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfvén waves (Grad–Shafranov equilibrium and ion radial force balance), sound waves (pressure constant along a field line and incompressible flows within a flux surface), and ion collisions (damping of poloidal flow). Finally, plasma transport across magnetic flux surfaces is induced by the many second order (in the small gyroradius expansion) toroidal torque effects indicated above. Nonambipolar components of the induced particle transport fluxes produce radial plasma currents. Setting the flux surface average of the net radial current induced by all these effects to zero yields the transport-time-scale equation for evolution of the plasma toroidal flow. It includes a combination of global toroidal flow damping and resonant torques induced by nonaxisymmetric magnetic field components, poloidal magnetic field transients, and momentum source effects, as well as the usual collision- and microturbulence-induced transport. On the transport time scale, the plasma toroidal rotation determines the radial electric field for net ambipolar particle transport. The ultimate radial particle transport is composed of intrinsically ambipolar fluxes plus nonambipolar fluxes evaluated at this toroidal-rotation-determined radial electric field.

1.
R.
Aymar
,
V. A.
Chuyanov
,
M.
Huguet
,
Y.
Shimomura
,
ITER Joint Central Team
, and
ITER Home Teams
,
Nucl. Fusion
41
,
1301
(
2001
).
2.
J. D.
Callen
,
A. J.
Cole
, and
C. C.
Hegna
,
Nucl. Fusion
49
,
085021
(
2009
).
3.
S. I.
Braginskii
, in
Reviews of Plasma Physics
, edited by
M. A.
Leontovich
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
4.
M. N.
Rosenbluth
,
P. H.
Rutherford
,
J. B.
Taylor
,
E. A.
Frieman
, and
L. M.
Kovrizhnikh
,
Plasma Physics and Controlled Nuclear Fusion Research 1971
(
International Atomic Energy Agency
,
Vienna
,
1972
), Vol.
1
, p.
495
.
5.
F. L.
Hinton
and
R. D.
Hazeltine
,
Rev. Mod. Phys.
48
,
239
(
1976
).
6.
S. P.
Hirshman
and
D. J.
Sigmar
,
Nucl. Fusion
21
,
1079
(
1981
).
7.
P. J.
Catto
and
A. I.
Simakov
,
Phys. Plasmas
12
,
012501
(
2005
).
8.
N.
Mattor
and
P. H.
Diamond
,
Phys. Fluids
31
,
1180
(
1988
).
9.
A. G.
Peeters
,
Phys. Plasmas
5
,
763
(
1998
).
10.
B.
Scott
,
Phys. Plasmas
10
,
963
(
2003
).
11.
Ö. D.
Gürcan
,
P. H.
Diamond
,
T. S.
Hahm
, and
R.
Singh
,
Phys. Plasmas
14
,
042306
(
2007
).
12.
R. E.
Waltz
,
G. M.
Staebler
,
J.
Candy
, and
F. L.
Hinton
,
Phys. Plasmas
14
,
122507
(
2007
);
R. E.
Waltz
,
G. M.
Staebler
,
J.
Candy
, and
F. L.
Hinton
,
Phys. Plasmas
16
,
079902
(E) (
2009
).
13.
P. H.
Diamond
,
C. J.
McDevitt
,
Ö. D.
Gürcan
,
T. S.
Hahm
,
W. X.
Wang
,
E. S.
Yoon
,
I.
Holod
,
Z.
Lin
,
V.
Naulin
, and
R.
Singh
,
Nucl. Fusion
49
,
045002
(
2009
).
14.
T. H.
Stix
,
The Theory of Plasma Waves
(
McGraw-Hill
,
New York
,
1962
), p.
206
.
15.
K. C.
Shaing
,
S. P.
Hirshman
, and
J. D.
Callen
,
Phys. Fluids
29
,
521
(
1986
).
16.
K. C.
Shaing
,
Phys. Plasmas
10
,
1443
(
2003
).
17.
K. C.
Shaing
and
J. D.
Callen
,
Nucl. Fusion
22
,
1061
(
1982
).
18.
R.
Fitzpatrick
,
Nucl. Fusion
33
,
1049
(
1993
).
19.
A. J.
Cole
and
R.
Fitzpatrick
,
Phys. Plasmas
13
,
032503
(
2006
).
20.
A. J.
Cole
,
C. C.
Hegna
, and
J. D.
Callen
,
Phys. Rev. Lett.
99
,
065001
(
2007
).
21.
A. J.
Cole
,
C. C.
Hegna
, and
J. D.
Callen
,
Phys. Plasmas
15
,
056102
(
2008
).
22.
R. D.
Hazeltine
,
F. L.
Hinton
, and
M. N.
Rosenbluth
,
Phys. Fluids
16
,
1645
(
1973
).
23.
S. P.
Hirshman
and
S. C.
Jardin
,
Phys. Fluids
22
,
731
(
1979
).
24.
S. C.
Jardin
,
J. Comput. Phys.
43
,
31
(
1981
).
25.
J.
Blum
and
J.
Le Foll
,
Comput. Phys. Rep.
1
,
465
(
1984
).
26.
J. D.
Callen
,
R. J.
Colchin
,
R. H.
Fowler
,
D. G.
McAlees
, and
J. A.
Rome
,
Plasma Physics and Controlled Nuclear Fusion Research 1974
(
International Atomic Energy Agency
,
Vienna
,
1975
), Vol.
1
, p.
645
.
27.
K. C.
Shaing
and
J. D.
Callen
,
Phys. Fluids
26
,
3315
(
1983
).
28.
K. C.
Shaing
,
Phys. Fluids
29
,
2231
(
1986
).
29.
J. D.
Callen
,
Phys. Plasmas
12
,
092512
(
2005
).
30.
J. J.
Ramos
,
Phys. Plasmas
12
,
112301
(
2005
).
31.
F. L.
Hinton
,
R. E.
Waltz
, and
J.
Candy
,
Phys. Plasmas
11
,
2433
(
2004
).
32.
K. C.
Shaing
,
Phys. Fluids
31
,
8
(
1988
).
33.
A. L.
Garcia-Perciante
,
J. D.
Callen
,
K. C.
Shaing
, and
C. C.
Hegna
,
Phys. Plasmas
12
,
052516
(
2005
).
34.
Y. B.
Kim
,
P. H.
Diamond
, and
R. J.
Groebner
,
Phys. Fluids B
3
,
2050
(
1991
).
35.
W. A.
Houlberg
,
K. C.
Shaing
,
S. P.
Hirshman
, and
M. C.
Zarnstorff
,
Phys. Plasmas
4
,
3230
(
1997
).
36.
J. D.
Callen
,
Phys. Plasmas
14
,
040701
(
2007
).
37.
J. D.
Callen
,
Phys. Plasmas
14
,
104702
(
2007
).
38.
J. W.
Connor
,
R. J.
Hastie
, and
J. B.
Taylor
,
Phys. Plasmas
15
,
014701
(
2008
).
39.
J. D.
Callen
,
Phys. Plasmas
15
,
014702
(
2008
).
40.
S. P.
Hirshman
,
Nucl. Fusion
18
,
917
(
1978
).
41.
A. J.
Cole
,
C. C.
Hegna
, and
J. D.
Callen
, “
Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-Symmetric Stellarators Using an Integral-Truncation Technique
,” Report No. UW-CPTC 08-8, June
2009
(available from http://www.cptc.wisc.edu).
42.
A. M.
Garofalo
,
K. H.
Burrell
,
J. C.
DeBoo
,
G. L.
Jackson
,
M.
Lanctot
,
H.
Reimerdes
,
M. J.
Schaffer
,
W. M.
Solomon
, and
E. J.
Strait
,
Phys. Rev. Lett.
101
,
195005
(
2008
).
43.
A. M.
Garofalo
,
W. M.
Solomon
,
M.
Lanctot
,
K. H.
Burrell
,
J. C.
DeBoo
,
J. S.
deGrassie
,
G. L.
Jackson
,
J. -K.
Park
,
H.
Reimerdes
,
M. J.
Schaffer
, and
E. J.
Strait
,
Phys. Plasmas
16
,
056119
(
2009
).
44.
J. J.
Ramos
, private communication (
2009
).
45.
J. D.
Callen
,
W. X.
Qu
,
K. D.
Siebert
,
B. A.
Carreras
,
K. C.
Shaing
, and
D. A.
Spong
,
Plasma Physics and Controlled Nuclear Fusion Research 1986
(
International Atomic Energy Agency
,
Vienna
,
1987
), Vol.
2
, p.
157
.
46.
H. E.
Mynick
and
W. N. G.
Hitchon
,
Nucl. Fusion
23
,
1053
(
1983
).
47.
C.
Angioni
,
A. G.
Peeters
,
X.
Garbet
,
A.
Manini
,
F.
Ryter
, and
ASDEX Upgrade Team
,
Nucl. Fusion
44
,
827
(
2004
).
48.
A. G.
Peeters
,
C.
Angioni
, and
D.
Strintzi
,
Phys. Rev. Lett.
98
,
265003
(
2007
).
49.
T. S.
Hahm
,
P. H.
Diamond
,
O. D.
Gurcan
, and
G.
Rewoldt
,
Phys. Plasmas
14
,
072302
(
2007
).
50.
Ö. D.
Gürcan
,
P. H.
Diamond
, and
T. S.
Hahm
,
Phys. Rev. Lett.
100
,
135001
(
2008
).
51.
T. S.
Hahm
,
P. H.
Diamond
,
O. D.
Gurcan
, and
G.
Rewoldt
,
Phys. Plasmas
15
,
055902
(
2008
).
52.
A. G.
Peeters
,
C.
Angioni
, and
D.
Stinzi
,
Phys. Plasmas
16
,
034703
(
2009
).
53.
T. S.
Hahm
,
P. H.
Diamond
,
O. D.
Gurcan
, and
G.
Rewoldt
,
Phys. Plasmas
16
,
034704
(
2009
).
54.
H. L.
Berk
and
K.
Molvig
,
Phys. Fluids
26
,
1385
(
1983
).
55.
M.
Yokoyama
,
J. D.
Callen
, and
C. C.
Hegna
,
Nucl. Fusion
36
,
1307
(
1996
).
56.
J. E.
Rice
,
A. C.
Ince-Cushman
,
P. T.
Bonoli
,
M. J.
Greenwald
,
J. W.
Hughes
,
R. R.
Parker
,
M. L.
Reinke
,
G. M.
Wallace
,
C. L.
Fiore
,
R. S.
Granetz
,
A. E.
Hubbard
,
J. H.
Irby
,
E. S.
Marmar
,
S.
Shiraiwa
,
S. M.
Wolfe
,
S. J.
Wukitch
,
M.
Bitter
,
K.
Hill
, and
J. R.
Wilson
,
Nucl. Fusion
49
,
025004
(
2009
).
57.
F. L.
Hinton
and
M. N.
Rosenbluth
,
Phys. Lett. A
259
,
267
(
1999
).
58.
R. J.
Taylor
,
M. L.
Brown
,
B. D.
Fried
,
H.
Grote
,
J. R.
Liberati
,
G. J.
Morales
,
P.
Pribyl
,
D.
Darrow
, and
M.
Ono
,
Phys. Rev. Lett.
63
,
2365
(
1989
).
59.
N. M.
Ferraro
, “
Non-Ideal Effects on the Stability and Transport of Magnetized Plasmas
,” Ph.D. thesis,
Princeton University
, November
2008
, p.
18
.
You do not currently have access to this content.