Measurements of shear Alfvén waves are used to test the predictions of a variety of different electron collision operators, including several Krook collision operators as well as a Lorentz collision operator. New expressions for the collisional warm-plasma dielectric tensor resulting from the use of the fully magnetized collisional Boltzmann equation are presented here. Theoretical predictions for the parallel phase velocity and damping as a function of perpendicular wave number k are derived from the dielectric tensor. Laboratory measurements of the parallel phase velocity and damping of shear Alfvén waves were made to test these theoretical predictions in both the kinetic (vtevA) and inertial (vtevA) parameter regimes and at several wave frequencies (ω<ωci). Results show that, in the inertial regime, the best match between measurements and theory occur when any of the Krook operators are used to describe electron collisions. In contrast, the best agreement in the kinetic regime is found when collisions are completely ignored.

1.
S. I.
Braginskii
,
Rev. Plasma Phys.
1
,
205
(
1965
).
2.
E. P.
Gross
,
Phys. Rev.
82
,
232
(
1951
).
3.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
,
Phys. Rev.
94
,
511
(
1954
).
4.
E. P.
Gross
and
M.
Krook
,
Phys. Rev.
102
,
593
(
1956
).
5.
M.
Opher
,
G. J.
Morales
, and
J. N.
Leboeuf
,
Phys. Rev. E
66
,
016407
(
2002
).
6.
G.
Rewoldt
,
W. M.
Tang
, and
R. J.
Hastie
,
Phys. Fluids
29
,
2893
(
1986
).
7.
C. L.
Hedrick
,
J. -N.
Leboeuf
, and
D. A.
Spong
,
Phys. Plasmas
2
,
2033
(
1995
).
8.
W.
Gekelman
,
H.
Pfister
,
Z.
Lucky
,
J.
Bamber
,
D.
Leneman
, and
J.
Maggs
,
Rev. Sci. Instrum.
62
,
2875
(
1991
).
9.
H.
Alfvén
,
Nature (London)
150
,
405
(
1942
).
10.
R. J.
Stéfant
,
Phys. Fluids
13
,
440
(
1970
).
11.
A.
Hasegawa
,
J. Geophys. Res.
81
,
5083
, DOI:10.1029/JA081i028p05083 (
1976
).
12.
C.
Goertz
and
R.
Boswell
,
J. Geophys. Res.
84
,
7239
, DOI:10.1029/JA084iA12p07239 (
1979
).
13.
C.
Kletzing
and
S.
Hu
,
Geophys. Res. Lett.
693
,
4
(
2001
).
14.
R. C.
Cross
,
Plasma Phys.
25
,
1377
(
1983
).
15.
G. G.
Borg
,
M. H.
Brennan
,
R. C.
Cross
,
L.
Giannone
, and
I. J.
Donnelly
,
Plasma Phys. Controlled Fusion
27
,
1125
(
1985
).
16.
W.
Gekelman
,
S.
Vincena
,
D.
Leneman
, and
J.
Maggs
,
J. Geophys. Res.
102
,
7225
, DOI:10.1029/96JA03683 (
1997
).
17.
W.
Gekelman
,
J. Geophys. Res.
104
,
14417
, DOI:10.1029/98JA00161 (
1999
).
18.
D.
Leneman
,
W.
Gekelman
, and
J.
Maggs
,
Phys. Plasmas
7
,
3934
(
2000
).
19.
S.
Vincena
,
W.
Gekelman
, and
J.
Maggs
,
Phys. Plasmas
8
,
3884
(
2001
).
20.
G. J.
Morales
,
R. S.
Loritsch
, and
J. E.
Maggs
,
Phys. Plasmas
1
,
3765
(
1994
).
21.
G.
Morales
and
J.
Maggs
,
Phys. Plasmas
4
,
4118
(
1997
).
22.
D.
Swanson
,
Plasma Waves
, 2nd ed. (
Institute of Physics
,
Bristol
,
2003
).
23.
B. D.
Fried
and
S. D.
Conte
,
The Plasma Dispersion Function
(
Academic
,
New York
,
1961
).
24.
B. B.
Kadomtsev
,
Plasma Turbulence
(
Academic
,
New York
,
1965
).
25.
P.
Clemmow
and
J.
Dougherty
,
Electrodynamics of Particles and Plasmas
(
Addison-Wesley
,
London
,
1969
).
26.
B. D.
Fried
,
A. N.
Kaufman
, and
D. L.
Sachs
,
Phys. Fluids
9
,
292
(
1966
).
27.
A.
Alexandrov
,
L.
Bogdankevich
, and
A.
Rukhadze
,
Principles of Plasma Electrodynamics
(
Springer-Verlag
,
New York
,
1984
).
28.
R. A.
Koch
and
W.
Horton
, Jr.
,
Phys. Fluids
18
,
861
(
1975
).
29.
J. R.
Peñano
,
G. J.
Morales
, and
J. E.
Maggs
,
Phys. Plasmas
7
,
144
(
2000
).
30.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
Cambridge, UK
,
2002
).
31.
C. A.
Kletzing
,
S. R.
Bounds
,
J.
Martin-Hiner
,
W.
Gekelman
, and
C.
Mitchell
,
Phys. Rev. Lett.
90
,
035004
(
2003
).
32.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
New York, NY
,
1992
).
You do not currently have access to this content.