The triple-degenerate derivative nonlinear Schrödinger (TDNLS) system modified with resistive wave damping and growth is truncated to study the coherent coupling of four waves, three Alfven and one acoustic, near resonance. In the conservative case, the truncation equations derive from a time independent Hamiltonian function with two degrees of freedom. Using a Poincare map analysis, two parameters regimes are explored. In the first regime we check how the modulational instability of the TDNLS system affects to the dynamics of the truncation model, while in the second one the exact triple degenerated case is discussed. In the dissipative case, the truncation model gives rise to a six dimensional flow with five free parameters. Computing some bifurcation diagrams the dependence with the sound to Alfven velocity ratio as well as the Alfven modes involved in the truncation is analyzed. The system exhibits a wealth of dynamics including chaotic attractor, several kinds of bifurcations, and crises. The truncation model was compared to numerical integrations of the TDNLS system.

1.
T.
Hada
,
Geophys. Res. Lett.
20
,
2415
, DOI:10.1029/93GL02704 (
1993
).
2.
A.
Rogister
,
Phys. Fluids
14
,
2733
(
1971
).
3.
P. M.
Drysdale
and
P. A.
Robinson
,
Phys. Plasmas
9
,
4896
(
2002
);
T.
Kakutani
and
H.
Ono
,
J. Phys. Soc. Jpn.
26
,
1305
(
1969
);
T.
Taniuti
and
H.
Washimi
,
Phys. Rev. Lett.
21
,
209
(
1968
).
4.
G. M.
Webb
,
M.
Brio
, and
G. P.
Zank
,
J. Plasma Phys.
54
,
201
(
1995
).
5.
Y.
Nariyuki
and
T.
Hada
,
J. Phys. Soc. Jpn.
76
,
074901
(
2007
).
6.
G.
Pelletier
and
A.
Marcowith
,
Astrophys. J.
502
,
598
(
1998
).
7.
D. A.
Russell
and
E.
Ott
,
Phys. Fluids
24
,
1976
(
1981
).
8.
S.
Ghosh
and
K.
Papadopoulos
,
Phys. Fluids
30
,
1371
(
1987
).
9.
R. A.
Miranda
,
E. L.
Rempel
,
A. C. L.
Chian
, and
F. A.
Borotto
,
J. Atmos. Sol.-Terr. Phys.
67
,
1852
(
2005
).
10.
J. R.
Sanmartin
,
O.
Lopez-Rebollal
,
E.
Del Rio
, and
S.
Elaskar
,
Phys. Plasmas
11
,
2026
(
2004
).
11.
S. A.
Elaskar
,
G.
Sánchez-Arriaga
, and
J. R.
Sanmartin
,
Mecanica Computacional
25
,
2415
(
2006
).
12.
G.
Sanchez-Arriaga
,
J. R.
Sanmartín
, and
S. A.
Elaskar
,
Phys. Plasmas
14
,
082108
(
2007
).
13.
G.
Sanchez-Arriaga
,
T.
Hada
, and
Y.
Nariyuki
,
Phys. Plasmas
16
,
042302
(
2009
).
14.
S. D.
Drell
,
H. M.
Foley
, and
M. A.
Ruderman
,
J. Geophys. Res.
70
,
3131
, DOI:10.1029/JZ070i013p03131 (
1965
);
A.
Barnett
and
S.
Olbert
,
J. Geophys. Res.
91
,
10117
, DOI:10.1029/JA091iA09p10117 (
1986
);
J. R.
Sanmartin
and
M.
Martinez-Sanchez
,
J. Geophys. Res.
100
,
1677
, DOI:10.1029/94JA02857 (
1995
).
15.
G.
Vahala
and
D.
Montgomery
,
Phys. Fluids
14
,
1137
(
1971
);
M. P.
Hertzberg
,
N. F.
Cramer
, and
S. V.
Vladimirov
,
Phys. Plasmas
10
,
3160
(
2003
).
16.
P.
Terry
and
W.
Horton
,
Phys. Fluids
25
,
491
(
1982
);
A. M.
Martins
and
J. T.
Mendonça
,
Phys. Fluids
31
,
3286
(
1988
);
P. A.
Robinson
and
P. M.
Drysdale
,
Phys. Rev. Lett.
77
,
2698
(
1996
);
[PubMed]
P. M.
Drysdale
and
P. A.
Robinson
,
Phys. Plasmas
9
,
4896
(
2002
).
17.
G. I.
de Oliveira
,
L. P. L.
de Oliveira
, and
F. B.
Rizzato
,
Physica D
104
,
119
(
1997
).
You do not currently have access to this content.