As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a 300kV, 6ns, 100Ω, and 1–300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibrium pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.

1.
G. A.
Mesyats
,
S. D.
Korovin
,
A. V.
Gunin
,
V. P.
Gubanov
,
A. S.
Stepchenko
,
D. M.
Grishin
,
V. F.
Landl
, and
P. I.
Alekseenko
,
Laser Part. Beams
21
,
197
(
2003
).
2.
S. D.
Korovin
,
E. A.
Litvinov
,
G. A.
Mesyats
,
V. V.
Rostov
,
S. N.
Rukin
,
V. G.
Shpak
, and
M. I.
Yalandin
,
IEEE Trans. Plasma Sci.
34
,
1771
(
2006
).
3.
Ya. E.
Krasik
,
A.
Dunaevsky
,
A.
Krokhmal
,
J.
Felsteiner
,
A. V.
Gunin
,
I. V.
Pegel
, and
S. D.
Korovin
,
J. Appl. Phys.
89
,
2379
(
2001
).
4.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamilogulu
,
High Power Microwaves
, 2nd ed. (
Taylor & Francis Group
,
New York
,
2007
), Chap. 5.
5.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
The Institute of Electrical and Electronics Engineer, Inc.
,
New York
,
2001
), Chap. 9.
6.
A. S.
Gilmour
, Jr.
,
Microwave Tubes
(
Artech House
,
Norwood
,
1986
).
7.
Ya. E.
Krasik
,
D.
Yarmolich
,
J. Z.
Gleizer
,
V.
Vekselman
,
Y.
Hadas
,
V. Tz.
Gurovich
, and
J.
Felsteiner
,
Phys. Plasmas
16
,
057103
(
2009
).
8.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
,
IEEE Trans. Plasma Sci.
36
,
718
(
2008
).
9.
R. B.
Miller
,
J. Appl. Phys.
84
,
3880
(
1998
).
10.
Ya. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
A.
Krokhmal
,
V. Ts.
Gurovich
,
E.
Efimov
,
J.
Felsteiner
,
V.
Bernshtam
, and
Yu. M.
Saveliev
,
J. Appl. Phys.
98
,
093308
(
2005
).
11.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
H. W.
Yang
,
H.
Zhou
,
C. W.
Yuan
,
W. H.
Zhou
, and
L.
Luo
,
Phys. Plasmas
15
,
083102
(
2008
).
12.
D.
Shiffler
,
M.
LaCour
,
K.
Golby
,
M.
Sena
,
M.
Mitchell
,
M.
Haworth
,
K.
Hendricks
, and
T.
Spencer
,
IEEE Trans. Plasma Sci.
29
,
445
(
2001
).
13.
D. A.
Shiffler
,
M. J.
LaCour
,
M.
Ruebush
,
K.
Golby
,
D.
Zagar
,
M.
Haworth
,
T.
Knowles
, and
R.
Umstattd
,
Rev. Sci. Instrum.
73
,
4358
(
2002
).
14.
D. A.
Shiffler
,
J.
Heggemeier
,
M. J.
LaCour
,
K.
Golby
, and
M.
Ruebush
,
Phys. Plasmas
11
,
1680
(
2004
).
15.
V.
Vekselman
,
J.
Glerzer
,
D.
Yarmolich
,
J.
Felsteiner
,
Ya. E.
Krasik
,
L.
Liu
, and
V.
Bernshtam
,
Appl. Phys. Lett.
93
,
081503
(
2008
).
16.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
H. W.
Yang
,
T.
Shu
,
H.
Zhou
,
C. W.
Yuan
,
J.
Zhang
, and
L.
Luo
,
J. Appl. Phys.
104
,
023304
(
2008
).
17.
A. V.
Gunin
,
V. F.
Landl
,
S. D.
Korovin
,
G. A.
Mesyats
,
I. V.
Pegel
, and
V. V.
Rostov
,
IEEE Trans. Plasma Sci.
28
,
537
(
2000
).
18.
A.
Dunaevsky
,
Ya. E.
Krasik
,
J.
Felsteiner
, and
A.
Sternlieb
,
J. Appl. Phys.
90
,
3689
(
2001
).
19.
Ya. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Phys. Plasmas
8
,
2466
(
2001
).
20.
Q. L.
Liao
,
Y.
Yang
,
L. S.
Xia
,
J. J.
Qi
,
Y.
Zhang
,
Y. H.
Huang
, and
Z.
Qin
,
Phys. Plasmas
15
,
114505
(
2008
).
21.
F. J.
Agee
,
IEEE Trans. Plasma Sci.
26
,
235
(
1998
).
22.
Y. W.
Fan
,
H. H.
Zhong
,
H. W.
Yang
,
Z. Q.
Li
,
T.
Shu
,
J.
Zhang
,
Y.
Wang
, and
L.
Luo
,
J. Appl. Phys.
103
,
123301
(
2008
).
23.
Y. W.
Fan
,
C. W.
Yuan
,
H. H.
Zhong
,
T.
Shu
,
J. D.
Zhang
,
H. W.
Yang
,
J. H.
Yang
,
Y.
Wang
,
L.
Luo
, and
Y. S.
Zhao
,
IEEE Trans. Plasma Sci.
35
,
1075
(
2007
).
24.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
J. D.
Zhang
,
J. L.
Liu
,
J. H.
Yang
,
J.
Zhang
,
C. W.
Yuan
, and
L.
Luo
,
Rev. Sci. Instrum.
79
,
034703
(
2008
).
25.
V. P.
Tarakanov
,
User’s Manual for Code KARAT
(
Berkeley Research Associates
,
Berkeley
,
1992
).
26.
L. M.
Li
,
L.
Liu
,
L.
Chang
,
H.
Wan
,
J. C.
Wen
, and
Y. G.
Liu
,
Appl. Surf. Sci.
255
,
4563
(
2009
).
27.
J. K.
Shultis
and
R. E.
Faw
,
Fundamentals of Nuclear Science and Engineering
(
Dekker
,
New York
,
2002
).
28.
G. A.
Mesyats
,
Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc
(
Nauka
,
Moscow
,
2000
), Chap. 14.
29.
Y. M.
Saveliev
,
W.
Sibbett
, and
D. M.
Parkes
,
J. Appl. Phys.
94
,
5776
(
2003
).
30.
M. E.
Cuneo
,
P. R.
Menge
,
D. L.
Hanson
,
W. E.
Fowler
,
M. A.
Bernard
,
G. R.
Zisks
,
A. B.
Filuk
,
T. D.
Pointon
,
R. A.
Vesey
,
D. R.
Welch
,
J. E.
Bailey
,
M. P.
Desjarlais
,
T. R.
Lockner
,
T. A.
Mehlhorn
,
S. A.
Slutz
, and
M. A.
Stark
,
IEEE Trans. Plasma Sci.
25
,
229
(
1997
).
31.
R. J.
Umstattd
,
C. A.
Schlise
, and
F.
Wang
,
IEEE Trans. Plasma Sci.
33
,
901
(
2005
).
32.
G.
Melin
,
J. Vac. Sci. Technol. A
5
,
2945
(
1987
).
You do not currently have access to this content.