Electron transport in the presence of long (nanosecond) laser pulses can be significantly different from that of magnetohydrodynamics calculations using Braginskii’s transport theory, due to the distortion of the underlying electron distribution function from a Maxwellian. To correctly model the transport under conditions relevant to direct and indirect-drive inertial fusion plasmas, the Vlasov–Fokker–Planck equation for the electrons should be solved; however, this is computationally intensive. Modified transport coefficients have been calculated for a distribution function appropriate to a plasma heated by inverse-bremsstrahlung, i.e., a super-Gaussian. The resulting transport was then compared to a Vlasov–Fokker–Planck code. Furthermore, it was shown that existing magnetohydrodynamics codes can be modified using the new transport coefficients and made more accurate by up to ten times with a modest computational cost.

1.
S. H.
Glenzer
,
W. E.
Alley
,
K. G.
Estabrook
,
J. S.
De Groot
,
M. G.
Haines
,
J. H.
Hammer
,
J. P.
Jadaud
,
B. J.
MacGowan
,
J. D.
Moody
,
W.
Rozmus
,
L. J.
Suter
,
T. L.
Weiland
, and
E. A.
Williams
,
Phys. Plasmas
6
,
2117
(
1999
).
2.
G.
Gregori
,
S. H.
Glenzer
,
J.
Knight
,
C.
Niemann
,
D.
Price
,
D. H.
Froula
,
M. J.
Edwards
,
R. P. J.
Town
,
A.
Brantov
,
W.
Rozmus
, and
V. Y.
Bychenkov
,
Phys. Rev. Lett.
92
,
205006
(
2004
).
3.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
,
Phys. Plasmas
11
,
339
(
2004
).
4.
D. H.
Froula
,
J. S.
Ross
,
B. B.
Pollock
,
P.
Davis
,
A. N.
James
,
L.
Divol
,
M. J.
Edwards
,
A. A.
Offenberger
,
D.
Price
,
R. P. J.
Town
,
G. R.
Tynan
, and
S. H.
Glenzer
,
Phys. Rev. Lett.
98
,
135001
(
2007
).
5.
A. B.
Langdon
,
Phys. Rev. Lett.
44
,
575
(
1980
).
6.
B. B.
Afeyan
,
A. E.
Chou
,
J. P.
Matte
,
R. P. J.
Town
, and
W. J.
Kruer
,
Phys. Rev. Lett.
80
,
2322
(
1998
).
7.
J. P.
Matte
,
M.
Lamoureux
,
C.
Moller
,
R. Y.
Yin
,
J.
Delettrez
,
J.
Virmont
, and
T. W.
Johnston
,
Plasma Phys. Controlled Fusion
30
,
1665
(
1988
).
8.
P.
Mora
and
H.
Yahi
,
Phys. Rev. A
26
,
2259
(
1982
).
9.
F. A.
Bibi
and
J. P.
Matte
,
Laser Part. Beams
22
,
103
(
2004
).
10.
J. M.
Liu
,
J. S.
De Groot
,
J. P.
Matte
,
T. W.
Johnston
, and
R. P.
Drake
,
Phys. Plasmas
1
,
3570
(
1994
).
11.
T. H.
Kho
and
M. G.
Haines
,
Phys. Rev. Lett.
55
,
825
(
1985
).
12.
C. T.
Dum
,
Phys. Fluids
21
,
945
(
1978
).
13.
C. T.
Dum
,
Phys. Fluids
21
,
956
(
1978
).
14.
S. I.
Braginskii
,
Rev. Plasma Phys.
1
,
205
(
1966
).
15.
E. M.
Epperlein
,
J. Phys. D
17
,
1823
(
1984
).
16.
E. M.
Epperlein
and
R. W.
Short
,
Phys. Rev. E
50
,
1697
(
1994
).
17.
C. P.
Ridgers
,
R. J.
Kingham
, and
A. G. R.
Thomas
,
Phys. Rev. Lett.
100
,
075003
(
2008
).
18.
R. J.
Kingham
and
A.
Bell
,
J. Comput. Phys.
194
,
1
(
2004
).
19.
M. N.
Rosenbluth
,
W. M.
MacDonald
, and
D. L.
Judd
,
Phys. Rev.
107
,
1
(
1957
).
20.
T. W.
Johnston
,
Phys. Rev.
120
,
1103
(
1960
).
21.
E. M.
Epperlein
and
M. G.
Haines
,
Phys. Fluids
29
,
1029
(
1986
).
22.
23.
S.
Brunner
and
E.
Valeo
,
Phys. Plasmas
9
,
923
(
2002
).
24.
D. A.
Tidman
and
R. A.
Shanny
,
Phys. Fluids
17
,
1207
(
1974
).
You do not currently have access to this content.