The reversal mechanism of a dipole magnetic field generated by dynamo action in a rotating spherical shell is investigated by a three-dimensional nonlinear magnetohydrodynamic simulation as well as a linear stability analysis. The emphasis of the study is on understanding the relationship between dipole reversal and the symmetry properties of the dynamo solution. As a result, first, it is found that there is a threshold of the magnetic Prandtl number, below which the dipole field is never reversed, and above which the reversal occurs at irregular intervals like the paleomagnetic evolution of the geodynamo. Second, it is shown that the dynamo process responsible for the generation of a dipole field (called “a-dynamo” in this paper) consists only of the antimirror symmetric magnetic field and the mirror symmetric velocity field with respect to the equatorial plane. Third, it is found that the components of the opposite symmetry to the a-dynamo grow only during the polarity reversal events and quickly decay afterwards. This indicates that the dipole field reversal and the loss of equatorial symmetry are tightly connected. In fact, it is clearly demonstrated by numerical analyses that the a-dynamo process is linearly unstable for the perturbation of opposite symmetry when the magnetic Prandtl number exceeds the threshold for dipole reversal. Mode coupling between the longitudinal Fourier components plays a crucial role in creating the instability. Based on the above results, it is proposed that symmetry-breaking instability could be the mechanism for dipole field reversal in the geodynamo process. The energy conversion between components of different symmetry is also analyzed in the quasistable polarity phase and in the polarity reversal phase, respectively.

1.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
Cambridge, England
,
1978
).
2.
P. H.
Roberts
and
G. A.
Glatzmaier
,
Rev. Mod. Phys.
72
,
1081
(
2000
).
3.
G. A.
Glatzmaier
and
P. H.
Roberts
,
Phys. Earth Planet. Inter.
91
,
63
(
1995
).
4.
S.
Kida
,
K.
Araki
, and
H.
Kitauchi
,
J. Phys. Soc. Jpn.
66
,
2194
(
1997
).
5.
G. A.
Glatzmaier
,
R. S.
Coe
,
L.
Hongre
, and
P. H.
Roberts
,
Nature
401
,
885
(
1999
).
6.
C.
Kutzner
and
U. R.
Christensen
,
Phys. Earth Planet. Inter.
131
,
29
(
2002
).
7.
A.
Kageyama
,
M. M.
Ochi
, and
T.
Sato
,
Phys. Rev. Lett.
82
,
5409
(
1999
).
8.
J.
Li
,
T.
Sato
, and
A.
Kageyama
,
Science
295
,
1887
(
2002
).
9.
G. R.
Sarson
and
C. A.
Jones
,
Phys. Earth Planet. Inter.
111
,
3
(
1999
).
10.
G. R.
Sarson
,
Philos. Trans. R. Soc. London, Ser. A
358
,
921
(
2000
).
11.
J.
Wicht
and
P.
Olson
,
Geochem., Geophys., Geosyst.
5
,
Q03H10
(
2004
).
12.
F.
Takahashi
,
M.
Matsushima
, and
Y.
Honkura
,
Earth, Planets Space
59
,
665
(
2007
).
13.
A.
Kageyama
,
T.
Sato
, and the
Complexity Simulation Group
,
Phys. Plasmas
2
,
1421
(
1995
).
14.
D. G.
McMillan
and
G. R.
Sarson
,
Phys. Earth Planet. Inter.
153
,
124
(
2005
).
15.
G. S.
Constantinescu
and
S. K.
Lele
,
J. Comput. Phys.
183
,
165
(
2002
).
16.
W. F.
Spotz
,
M. A.
Taylor
, and
P. N.
Swarztrauber
,
J. Comput. Phys.
145
,
432
(
1998
).
17.
N.
Nishikawa
and
K.
Kusano
,
Astrophys. J.
581
,
745
(
2002
).
18.
D.
Gubbins
and
K.
Zhang
,
Phys. Earth Planet. Inter.
75
,
225
(
1993
).
19.
F. H.
Busse
,
J. Fluid Mech.
44
,
441
(
1970
).
20.
J.
Aubert
and
J.
Wicht
,
Earth Planet. Sci. Lett.
221
,
409
(
2004
).
21.
J.
Aubert
,
J.
Aurnou
, and
J.
Wicht
,
Geophys. J. Int.
172
,
945
(
2008
).
22.
J. E. P.
Connerney
,
J. Geophys. Res.
98
,
18659
, DOI: 10.1029/93JE00980 (
1993
).
You do not currently have access to this content.