The next step toward fusion as a practical energy source is the design and construction of ITER [R. Aymar et al., Nucl. Fusion41, 1301 (2001)], a device capable of producing and controlling the high-performance plasma required for self-sustaining fusion reactions, i.e., “burning plasma.” ITER relies in part on ion-cyclotron radio frequency power to heat the deuterium and tritium fuel to fusion temperatures. In order to heat effectively, the radio frequency wave fields must couple efficiently to the dense core plasma. Calculations in this paper support the argument that this will be the case. Three-dimensional full-wave simulations show that fast magnetosonic waves in ITER propagate radially inward with strong central focusing and little toroidal spreading. Energy deposition, current drive, and plasma flow are all highly localized near the plasma center. Very high resolution, two-dimensional calculations reveal the presence of mode conversion layers, where fast waves can be converted to slow ion cyclotron waves. When minority ions such as deuterium or helium-3 are used to damp the launched waves, these ions can be accelerated to high energies, forming suprathermal tails that significantly affect the wave propagation and absorption. By neglecting the toroidal localization of the waves and the finite radial excursion of the energetic particle orbits, the quasilinear evolution of these suprathermal ion tails can be simulated self-consistently in one spatial dimension and two velocity dimensions.

1.
R.
Aymar
,
V. A.
Chuyanov
,
M.
Huguet
,
Y.
Shimomura
,
ITER Joint Central Team
, and
ITER Home Teams
,
Nucl. Fusion
41
,
1301
(
2001
).
2.
D. F. H.
Start
,
J.
Jacquinot
,
V.
Bergeaud
,
V. P.
Bhatnagar
,
G. A.
Cottrell
,
S.
Clement
,
L.-G.
Eriksson
,
A.
Fasoli
,
A.
Gondhalekar
,
C.
Gormezano
,
G.
Grosshoeg
,
K.
Guenther
,
P.
Harbour
,
L. D.
Horton
,
A.
Howman
,
H.
Jackel
,
O. N.
Jarvis
,
K. D.
Lawson
,
C.
Lowry
,
M.
Mantsinen
,
F. B.
Marcus
,
R.
Monk
,
E.
Righi
,
F. G.
Rimini
,
G. J.
Sadler
,
G. R.
Saibene
,
R.
Sartori
,
B.
Schunke
,
S.
Sharapov
,
A. C. C.
Sips
,
M.
Stamp
, and
P.
van Belle
,
Phys. Rev. Lett.
80
,
4681
(
1998
).
3.
P. T.
Bonoli
,
D. B.
Batchelor
,
L. A.
Berry
,
M.
Choi
,
D. A.
D’Ippolito
,
R. W.
Harvey
,
E. F.
Jaeger
,
J. R.
Myra
,
C. K.
Phillips
,
D. N.
Smithe
,
V.
Tang
,
E.
Valeo
,
J. C
Wright
,
M.
Brambilla
,
R.
Bilato
,
V.
Lancellotti
, and
R.
Maggiora
,
J. Phys.: Conf. Ser.
78
,
012006
(
2007
).
4.
E. F.
Jaeger
,
L. A.
Berry
,
E.
D’Azevedo
,
D. B.
Batchelor
, and
M. D.
Carter
,
Phys. Plasmas
8
,
1573
(
2001
).
5.
M.
Brambilla
,
Plasma Phys. Controlled Fusion
41
,
1
(
1999
);
J. C.
Wright
,
P. T.
Bonoli
,
M.
Brambilla
,
F.
Meo
,
E.
D’Azevedo
,
D. B.
Batchelor
,
E. F.
Jaeger
,
L. A.
Berry
,
C. K.
Phillips
, and
A.
Pletzer
,
Phys. Plasmas
11
,
2473
(
2004
).
6.
E. F.
Jaeger
,
R. W.
Harvey
,
V. E.
Lynch
,
N.
Ershov
,
L. A.
Berry
,
P. T.
Bonoli
,
V.
Tang
,
R. D.
Moore
, and
the members of the SciDAC Centre for Simulation of Wave-Plasma Interactions (CSWPI)
,
J. Phys.: Conf. Ser.
46
,
82
(
2006
).
7.
E. F.
Jaeger
,
R. W.
Harvey
,
L. A.
Berry
,
J. R.
Myra
,
R. J.
Dumont
,
C. K.
Phillips
,
D. N.
Smithe
,
R. F.
Barrett
,
D. B.
Batchelor
,
P. T.
Bonoli
,
M. D.
Carter
,
E. F.
D’Azevedo
,
D. A.
D’Ippolito
,
R. D.
Moore
, and
J. C.
Wright
,
Nucl. Fusion
46
,
S397
(
2006
).
8.
E. F.
Jaeger
L. A.
Berry
,
S. D.
Ahern
,
R. F.
Barrett
,
D. B.
Batchelor
,
M. D.
Carter
,
E. F.
D’Azevedo
,
R. D.
Moore
R. W.
Harvey
,
J. R.
Myra
,
D. A.
D’Ippolito
,
R. J.
Dumont
,
C. K.
Phillips
,
H.
Okuda
,
D. N.
Smithe
,
P. T.
Bonoli
,
J. C.
Wright
, and
M.
Choi
,
Phys. Plasmas
13
,
056101
(
2006
).
9.
R.
Barrett
,
T.
Chan
,
E. F.
D’Azevedo
,
E. F.
Jaeger
,
K.
Wong
, and
R.
Wong
, “
Complex version of high performance computing LINPACK benchmark (HPL)
,”
Concurrency Comput.: Pract. Exper.
(to be published).
10.
K.
Goto
and
R. A.
van de Geijn
,
ACM Trans. Math. Softw.
34
,
1
(
2008
).
11.
T. H
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
New York
,
1992
).
12.
R. I.
Pinsker
,
M.
Porkolab
,
W. W.
Heidbrink
,
Y.
Luo
,
C. C.
Petty
,
R.
Prater
,
M.
Choi
,
D. A.
Schaffner
,
F. W.
Baity
,
E.
Fredd
,
J. C.
Hosea
,
R. W.
Harvey
,
A. P.
Smirnov
,
M.
Murakami
, and
M. A.
Van Zeeland
,
Nucl. Fusion
46
,
S416
(
2006
).
13.
V.
Tang
,
R. R.
Parker
,
P. T.
Bonoli
,
J. C.
Wright
,
R. S.
Granetz
,
R. W.
Harvey
,
E. F.
Jaeger
,
J.
Liptac
,
C. L.
Fiore
,
M.
Greenwald
,
J. H.
Irby
,
Y.
Lin
, and
S. J.
Wukitch
,
Plasma Phys. Controlled Fusion
49
,
873
(
2007
).
14.
C. F.
Kennel
and
F.
Engelmann
,
Phys. Fluids
9
,
2377
(
1966
).
15.
R. W.
Harvey
and
M. G.
McCoy
,
Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada
,
1992
(USDOC NTIS Document No. DE93002962).
16.
ITER Technical Basis Document (IAEA, Vienna,
2001
), Doc. No. GAO FDR 1 00–07–13 R1.0, Sec. 4.3.3.
17.
J.
Hosea
,
R. E.
Bell
,
B. P.
LeBlanc
,
C. K.
Phillips
,
G.
Taylor
,
E.
Valeo
,
J. R.
Wilson
,
E. F.
Jaeger
,
P. M.
Ryan
,
J.
Wilgen
,
H.
Yuh
,
F.
Levinton
,
S.
Sabbagh
,
K.
Tritz
,
J.
Parker
,
P. T.
Bonoli
,
R.
Harvey
, and
NSTX Team
,
Phys. Plasmas
15
,
056104
(
2008
).
18.
J. R.
Wilson
,
S.
Bernabei
,
T.
Biewer
,
S.
Diem
,
J.
Hosea
,
B.
LeBlanc
,
C. K.
Phillips
,
P.
Ryan
, and
D. W.
Swain
,
AIP Conf. Proc.
787
,
66
(
2005
).
19.
C. C.
Petty
,
R. I.
Pinsker
,
M. E.
Austin
,
F. W.
Baity
,
S. C.
Chiu
,
J. S.
DeGrassie
,
C. B.
Forest
,
R. H.
Goulding
,
R. W.
Harvey
,
D. J.
Hoffman
,
R. A.
James
,
T. C.
Luce
,
M.
Porkolab
, and
R.
Prater
,
Nucl. Fusion
35
,
773
(
1995
).
20.
F. W.
Perkins
,
Nucl. Fusion
17
,
1197
(
1977
).
21.
E. F.
Jaeger
,
L. A.
Berry
,
J. R.
Myra
,
D. B.
Batchelor
,
E.
D’Azevedo
,
P. T.
Bonoli
,
C. K.
Phillips
,
D. N.
Smithe
,
D. A.
D’Ippolito
,
M. D.
Carter
,
R. J.
Dumont
,
J. C.
Wright
, and
R. W.
Harvey
.
Phys. Rev. Lett.
90
,
195001
(
2003
).
22.
V. S.
Chan
,
S. C.
Chiu
, and
Y. A.
Omelchenko
,
Phys. Plasmas
9
,
501
(
2002
).
23.
M.
Choi
,
V. S.
Chan
,
R. I.
Pinsker
,
S. C.
Chiu
, and
W. W.
Heidbrink
,
Phys. Plasmas
12
,
072505
(
2005
).
You do not currently have access to this content.