Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling. It is an important runaway electron mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast. Analytical estimates of the density of produced runaway electrons are derived for cases of exponential-like temperature decay with a cooling rate lower than the collision frequency. Numerical simulations, aided by the analytical results, are used to compare the strength of the hot tail runaway generation with the Dreicer mechanism for different disruption parameters (cooling rate, post-thermal quench temperature, and electron density) assuming that no losses of runaway electrons occur. It is seen that the hot tail runaway production is going to be the dominant of these two primary runaway mechanisms in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion44, 519 (2002)].

1.
R.
Aymar
,
P.
Barabaschi
, and
Y.
Shimomura
,
Plasma Phys. Controlled Fusion
44
,
519
(
2002
).
2.
A. V.
Gurevich
,
Sov. Phys. JETP
12
,
904
(
1961
).
3.
J. W.
Connor
and
R. J.
Hastie
,
Nucl. Fusion
15
,
415
(
1975
).
4.
S. C.
Chiu
,
M. N.
Rosenbluth
,
R. W.
Harvey
, and
V. S.
Chan
,
Nucl. Fusion
38
,
1711
(
1998
).
5.
R. W.
Harvey
,
V. S.
Chan
,
S. C.
Chiu
,
T. E.
Evans
,
M. N.
Rosenbluth
, and
D. G.
Whyte
,
Phys. Plasmas
7
,
4590
(
2000
).
6.
P.
Helander
,
H.
Smith
,
T.
Fülöp
, and
L.-G.
Eriksson
,
Phys. Plasmas
11
,
5704
(
2004
).
7.
H.
Smith
,
P.
Helander
,
L.-G.
Eriksson
, and
T.
Fülöp
,
Phys. Plasmas
12
,
122505
(
2005
).
8.
M. N.
Rosenbluth
and
S. V.
Putvinski
,
Nucl. Fusion
37
,
1355
(
1997
).
9.
M. N.
Rosenbluth
,
P. B.
Parks
,
D.
Post
,
S.
Putvinski
,
N.
Putvinskaya
,
H. A.
Scott
, and the
I. Joint Central Team
, in
Runaway Electrons and Fast Plasma Shutdown
(
IAEA
,
Vienna
,
1996
), pp.
IAEA
CN
64
FP
.
10.
S.
Putvinski
,
N.
Fujisawa
,
D.
Post
,
N.
Putvinskaya
,
M. N.
Rosenbluth
, and
J.
Wesley
,
J. Nucl. Mater.
241–243
,
316
(
1997
).
11.
L.-G.
Eriksson
,
P.
Helander
,
F.
Andersson
,
D.
Anderson
, and
M.
Lisak
,
Phys. Rev. Lett.
92
,
205004
(
2004
).
12.
H.
Smith
,
P.
Helander
,
L.-G.
Eriksson
,
D.
Anderson
,
M.
Lisak
, and
F.
Andersson
,
Phys. Plasmas
13
,
102502
(
2006
).
13.
L. D.
Landau
and
E. M.
Lifshitz
, “
Quantum mechanics
,”
Course of Theoretical Physics
, 3rd ed. (
Pergamon
,
Oxford
,
1977
), Vol.
3
.
14.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
Cambridge
,
2002
).
15.
T. R.
Goodman
, in
Advances in Heat Transfer
, edited by
T. F.
Irvine
and
J. P.
Harnett
(
Academic
,
New York
,
1964
), Vol.
1
.
16.
L.-G.
Eriksson
and
P.
Helander
,
Comput. Phys. Commun.
154
,
175
(
2003
).
17.
P. H.
Rebut
,
R. J.
Bickerton
, and
B. E.
Keen
,
Nucl. Fusion
25
,
1011
(
1985
).
18.
R. H.
Cohen
,
Phys. Fluids
19
,
239
(
1976
).
19.
H.
Knoepfel
and
D. A.
Spong
,
Nucl. Fusion
19
,
785
(
1979
).
20.
T.
Fülöp
,
G.
Pokol
,
P.
Helander
, and
M.
Lisak
,
Phys. Plasmas
13
,
062506
(
2006
).
21.
F.
Andersson
,
P.
Helander
, and
L.-G.
Eriksson
,
Phys. Plasmas
8
,
5221
(
2001
).
22.
M.
Bakhtiari
,
G. J.
Kramer
,
M.
Takechi
,
H.
Tamai
,
Y.
Miura
,
Y.
Kusama
, and
Y.
Kamada
,
Phys. Rev. Lett.
94
,
215003
(
2005
).
23.
B.
Kurzan
,
K. H.
Steuer
, and
G.
Fussmann
,
Phys. Rev. Lett.
75
,
4626
(
1995
).
24.
J. R.
Martín-Solís
,
B.
Esposito
,
R.
Sánchez
, and
J. D.
Alvarez
,
Phys. Plasmas
6
,
238
(
1999
).
25.
J. R.
Myra
and
P. J.
Catto
,
Phys. Fluids B
5
,
1160
(
1993
).
26.
P.
Helander
,
L.-G.
Eriksson
, and
F.
Andersson
,
Phys. Plasmas
7
,
4106
(
2000
).
You do not currently have access to this content.