A Langmuir wave (LW) model is constructed whose equilibria are consistent with stimulated Raman scatter optimization, with Hamiltonian dynamics, and with rotational invariance. Linear instability analysis includes terms to all orders in wave amplitude and fluctuation wavenumber expansions, δk. Resultant LW modulational instability is nonstandard: As the LW amplitude increases, the unstable δk range first expands and then shrinks to zero. Large amplitude wave model dynamics requires hyperdiffraction terms if kλD<0.45, lest artificially small length scales become unstable.

1.
Y.
Kato
,
K.
Mima
,
N.
Miyanaga
,
S.
Arinaga
,
Y.
Kitagawa
,
M.
Nakatsuka
, and
C.
Yamanaka
,
Phys. Rev. Lett.
53
,
1057
(
1984
).
2.
H. A.
Rose
and
D. F.
DuBois
,
Phys. Rev. Lett.
72
,
2883
(
1994
).
3.
P.
Mounaix
and
L.
Divol
,
Phys. Rev. Lett.
89
,
165005
(
2002
).
4.
I. B.
Bernstein
,
J. M.
Greene
, and
M. D.
Kruskal
,
Phys. Rev.
108
,
546
(
1957
).
5.
W. M.
Manheimer
and
R. W.
Flynn
,
Phys. Fluids
14
,
2393
(
1971
).
6.
R. L.
Dewar
,
Phys. Fluids
15
,
712
(
1972
).
7.
G. J.
Morales
and
T. M.
O’Neil
,
Phys. Rev. Lett.
28
,
417
(
1972
).
8.
H. A.
Rose
,
Phys. Plasmas
12
,
012318
(
2005
).
9.
In a speckle, the ponderomotive expulsion of plasma density by variations of laser intensity may induce a frequency shift in excess of that provided by trapped electrons. However, this comparison invokes at least two dimensionless parameters, namely the speckle coherence time (or pulse length) normalized to the ion-acoustic speckle transit time and the electron quiver velocity in the laser EM field normalized to the electron thermal speed. For the purposes of this paper, the laser pulse duration is assumed small compared to the ion-acoustic time scale so that this laser intensity ponderomotive force induced frequency shift is a correction to the trapped LW frequency shift.
10.
L.
Yin
,
B. J.
Albright
,
K. J.
Bowers
,
W.
Daughton
, and
H. A.
Rose
,
Phys. Plasmas
15
,
013109
(
2007
).
11.
W. L.
Kruer
,
The Physics of Laser Plasma Interactions
(
Addison-Wesley
, New York,
1988
).
12.
For example, see
D.
Benisti
and
L.
Gremillet
,
Phys. Plasmas
14
,
042304
(
2007
).
13.
H. A.
Rose
and
D. A.
Russell
,
Phys. Plasmas
8
,
4784
(
2001
).
14.
There are various localization mechanisms, including LW dissipation, ponderomotive depletion of plasma density, and trapped electron frequency shift self-localization.
15.
T. P.
Coffey
,
Phys. Fluids
14
,
1402
(
1971
).
16.
H. A.
Rose
,
Phys. Plasmas
10
,
1468
(
2003
).
17.
J. P.
Holloway
and
J. J.
Dorning
,
Phys. Rev. A
44
,
3856
(
1991
).
18.
T.
O’Neil
,
Phys. Fluids
8
,
2255
(
1965
).
19.
See Eqs. (48) and (71) of Ref. 13.
20.
B. I.
Cohen
and
A. N.
Kaufman
,
Phys. Fluids
20
,
1113
(
1977
).
21.
This is true as long as the LW wave-packet amplitude goes to zero smoothly with distance from the wave-packet center, otherwise transit time damping also has a linear correction to Landau damping for small νescape.
22.
23.
J. M.
Manley
and
H. E.
Rowe
,
Proc. IRE
44
,
904
(
1956
).
24.
L.
Yin
,
M.
Ashour-Abdalla
,
J.
Bosqued
,
M.
El-Alaoui
, and
J.
Bougeret
,
J. Geophys. Res.
103
,
29595
, DOI: 10.1029/98JA02294 (
1998
).
25.
L.
Yin
,
W.
Daughton
,
B. J.
Albright
,
D. F.
DuBois
,
J. M.
Kindel
, and
H. X.
Vu
,
Phys. Rev. E
73
,
025401
(R) (
2006
).
26.
J. L.
Kline
,
D. S.
Montgomery
,
L.
Yin
 et al.,
Phys. Plasmas
13
,
055906
(
2006
).
27.
J. L.
Kline
,
D. S.
Montgomery
,
B.
Bezzerides
,
J. A.
Cobble
,
D. F.
DuBois
,
R. P.
Johnson
,
H. A.
Rose
,
L.
Yin
, and
H. X.
Vu
,
Phys. Rev. Lett.
94
,
175003
(
2005
).
You do not currently have access to this content.