The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys.195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

1.
T. R.
Jarboe
,
Plasma Phys. Controlled Fusion
36
,
945
(
1994
);
T. R.
Jarboe
,
I.
Henins
,
A. R.
Sherwood
,
C. W.
Barnes
, and
H. W.
Hoida
,
Phys. Rev. Lett.
51
,
39
(
1983
).
2.
R. D.
Wood
,
B. I.
Cohen
,
D. N.
Hill
 et al.,
Nucl. Fusion
45
,
1582
(
2005
).
3.
H. S.
McLean
,
S.
Woodruff
,
E. B.
Hooper
 et al.,
Phys. Rev. Lett.
88
,
125004
(
2002
);
[PubMed]
H. S.
McLean
,
S.
Woodruff
,
D. N.
Hill
 et al.,
30th EPS Conference on Controlled Fusion and Plasma Physics
,
St. Petersburg, Russia
, Europhysics Conference Abstracts Vol.
27A
(
2003
), p.
P3
230
.
4.
R.
Wood
,
D. N.
Hill
,
H. S.
McLean
,
E. B.
Hooper
,
B. F.
Hudson
,
J. M.
Moller
,and
C. R.
Romero-Talamás
, “Improved magnetic field generation efficiency and higher temperature spheromak plasmas,” Phys. Rev. Lett. (submitted).
5.
C. R.
Sovinec
,
J. M.
Finn
, and
D.
del-Castillo-Negrete
,
Phys. Plasmas
8
,
475
(
2001
).
6.
R. H.
Cohen
,
H. L.
Berk
,
B. I.
Cohen
 et al.,
Nucl. Fusion
43
,
1220
(
2003
).
7.
C. R.
Sovinec
,
B. I.
Cohen
,
G. A.
Cone
,
E. B.
Hooper
, and
H. S.
McLean
,
Phys. Rev. Lett.
94
,
035003
(
2005
).
8.
B. I.
Cohen
,
E. B.
Hooper
,
R. H.
Cohen
 et al.,
Phys. Plasmas
12
,
056106
(
2005
).
9.
E. B.
Hooper
,
T. A.
Kopriva
,
B. I.
Cohen
,
D. N.
Hill
,
H. S.
McLean
,
R. D.
Wood
,
S.
Woodruff
, and
C. R.
Sovinec
,
Phys. Plasmas
12
,
092503
(
2005
).
10.
C. R.
Sovinec
,
A. H.
Glasser
,
T. A.
Gianakon
 et al.,
J. Comput. Phys.
195
,
355
(
2004
).
11.

The amount of data in a mesh of biquartic elements, for example, is 16 times greater than that in the same number of standard elements or in a finite-difference grid. Moreover, for a given amount of data, high-order elements will be far more accurate with respect to MHD and anisotropic thermal conduction (Ref. 10). In addition, and similar to polynomial fitting, maxima need not lie at node locations when using cubic and quartic basis functions. There is additional computational cost in forming and solving matrices with high-order elements, however, because they are less sparse.

12.
S. I.
Braginskii
,
Reviews of Plasma Physics
, edited by
M. A.
Leontovich
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
13.
H. S.
McLean
,
R. D.
Wood
,
B. I.
Cohen
,
E. B.
Hooper
,
D. N.
Hill
,
J. M.
Moller
,
C.
Romero-Talamas
, and
S.
Woodruff
,
Phys. Plasmas
13
,
056105
(
2006
).
14.
D. D.
Ryutov
,
B. I.
Cohen
,
R. H.
Cohen
,
E. B.
Hooper
, and
C. R.
Sovinec
,
Phys. Plasmas
12
,
084504
(
2005
).
15.
E. B.
Hooper
,
D. N.
Hill
,
H. S.
McLean
,
C. A.
Romero-Talamás
, and
R. D.
Wood
,
Nucl. Fusion
47
,
1064
(
2007
).
16.
S.
Woodruff
,
D. N.
Hill
,
E. B.
Hooper
 et al.,
Phys. Rev. Lett.
90
,
095001
(
2003
).
17.
S.
Woodruff
,
B. W.
Stallard
,
H. S.
McLean
 et al.,
Phys. Rev. Lett.
93
,
205002
(
2004
);
[PubMed]
S.
Woodruff
,
B. I.
Cohen
,
E. B.
Hooper
 et al.,
Phys. Plasmas
12
,
052502
(
2005
).
18.
C. A.
Romero-Talamas
,
E. B.
Hooper
,
D. N.
Hill
,
B. I.
Cohen
,
H. S.
McLean
,
R. D.
Wood
, and
J. M.
Moller
,
J. Fusion Energy
26
,
169
(
2007
).
19.
B.
Hudson
,
R. D.
Wood
,
H. S.
McLean
,
E. B.
Hooper
,
D. N.
Hill
,
J.
Jayakumar
,
J.
Moller
,
C.
Romero-Talamás
,
T. A.
Casper
,
L. L.
LoDestro
, and
L. D.
Pearlstein
, “Energy confinement and magnetic field generation in the SSPX spheromak,” Phys. Plasmas (to be published).
20.
L.
Spitzer
,
Physics of Fully Ionized Gases
, 2nd rev. ed. (
Interscience
,
New York
,
1965
), pp.
136
146
.
21.
M. V.
Umansky
,
R. H.
Bulmer
,
D. N.
Hill
,
L. L.
LoDestro
,
W. M.
Nevins
,
D. D.
Ryutov
, and
S.
Woodruff
,
Plasma Phys. Controlled Fusion
48
,
235
(
2006
).
22.
E. B.
Hooper
,
R. H.
Cohen
, and
D. D.
Ryutov
,
J. Nucl. Mater.
278
,
104
(
2000
).
23.
J.-Y.
Ji
and
E. D.
Held
,
Bull. Am. Phys. Soc.
50
,
UP8
00014
(
2007
).
24.
E. D.
Held
,
J. D.
Callen
,
C. C.
Hegna
,
C. R.
Sovinec
,
T. A.
Gianakon
, and
S. E.
Kruger
,
Phys. Plasmas
11
,
2419
(
2004
).
You do not currently have access to this content.