A systematic stability analysis method using theoretical tools combining linear and self-consistent nonlinear theory is presented to analyze an ultrahigh gain gyrotron traveling-wave (gyro-TWT) amplifier operated in the fundamental TE11 mode in the Ka-band. It characterizes the role that the backward-wave component plays in the internal feedback physical processes of two major kinds of self-induced oscillations associated with TE11(1) absolute instability and TE21(2) gyrobackward-wave oscillation. For the first time, self-induced constriction in TE11(1) absolute instability caused by a strong backward-wave component is revealed through simulation. Both the thickness and resistivity of the distributed wall loss loaded on the inside of the interaction waveguide have obvious effects on stabilizing both kinds of oscillations. Following the stability analysis, a multistage interaction circuit is proposed by nonlinear analysis which shortens the length of the entire structure and enables the ultrahigh gain gyro-TWT to operate with high stability and wide bandwidth.

1.
2.
K. R.
Chu
,
L. R.
Barnett
,
H. Y.
Chen
,
S. H.
Chen
,
Ch.
Wang
,
Y. S.
Yeh
,
Y. C.
Tsai
,
T. T.
Yang
, and
T. Y.
Dawn
,
Phys. Rev. Lett.
74
,
1103
(
1995
).
3.
K. R.
Chu
,
H. Y.
Chen
,
C. L.
Hung
,
T. H.
Chang
,
L. R.
Barnett
,
S. H.
Chen
,
T. T.
Yang
, and
D. J.
Dialetis
,
IEEE Trans. Plasma Sci.
27
,
2
(
1999
).
4.
J. P.
Calame
,
M.
Garven
,
B. G.
Danly
,
B.
Levush
, and
K. T.
Nguyen
,
IEEE Trans. Electron Devices
49
,
8
(
2002
).
5.
H. H.
Song
,
D. B.
McDermott
,
Y.
Hirata
,
L. R.
Barnett
,
C. W.
Domier
,
H. L.
Hsu
,
T. H.
Chang
,
W. C.
Tsai
,
K. R.
Chu
, and
N. C.
Luhmann
, Jr.
,
Phys. Plasmas
11
,
5
(
2004
).
6.
W. C.
Tsai
,
T. H.
Chang
,
N. C.
Chen
, and
K. R.
Chu
,
Phys. Rev. E
70
,
056402
(
2004
).
7.
T. H.
Chang
and
N. C.
Chen
,
Phys. Rev. E
74
,
016402
(
2006
).
8.
K. R.
Chu
,
IEEE Trans. Plasma Sci.
30
,
3
(
2002
).
9.
R. S.
Symons
,
H. R.
Jory
,
S. J.
Hegji
, and
P. E.
Ferguson
,
IEEE Trans. Microwave Theory Tech.
29
,
794
(
1981
).
10.
L. R.
Barnett
,
J. M.
Baird
,
Y. Y.
Lau
,
K. R.
Chu
, and
V. L.
Granatstein
, IEDM Tech. Dig.
26
,
314
(
1980
).
11.
Q. S.
Wang
,
D. B.
Mcdermott
, and
N. C.
Luhmann
, Jr.
,
Phys. Rev. Lett.
75
,
4322
(
1995
).
12.
L. R.
Barnett
,
W. C.
Tsai
,
H. L.
Hsu
, and
N. C.
Luhman
, Jr.
, IVEC 2006 (
2006
), p.
461
.
13.
M.
Garven
,
J. P.
Calame
,
B. G.
Danly
,
K. T.
Nguyen
,
B.
Levush
,
F. N.
Wood
, and
D. E.
Pershing
,
IEEE Trans. Plasma Sci.
30
,
3
(
2002
).
14.
J. R.
Sirigiri
,
M. A.
Shapiro
, and
R. J.
Temkin
,
Phys. Rev. Lett.
90
,
258302
(
2003
).
15.
C. D.
Joye
,
M. A.
Shapiro
,
J. R.
Sirigir
, and
R. J.
Temkin
, IVEC2008 (
2008
), p.
89
.
16.
K. R.
Chu
and
A. T.
Lin
,
IEEE Trans. Plasma Sci.
16
,
2
(
1988
).
17.
C. S.
Kou
,
Q. S.
Wang
,
D. B.
McDermott
,
A. T.
Lin
,
K. R.
Chu
, and
N. C.
Luhmann
, Jr.
,
IEEE Trans. Plasma Sci.
20
,
3
(
1992
).
18.
C. L.
Hung
,
Phys. Plasmas
13
,
033109
(
2006
).
19.
C. L.
Hung
and
Y. S.
Yeh
,
Phys. Plasmas
12
,
103102
(
2005
).
20.
J.
Ruo
and
C.
Jiao
,
Appl. Phys. Lett.
88
,
061115
(
2006
).
21.
J. A.
Davies
,
Phys. Fluids B
1
,
3
(
1989
).
You do not currently have access to this content.