Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm’s law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet–Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate than Sweet–Parker’s classical one . The width of the diffusion region (current sheet) in the collisionless regime is found to be , which is independent of the global reconnection scale and is only prescribed by microphysics (electron inertial length, , and electron Larmor radius, ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet–Parker’s equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.
Skip Nav Destination
Article navigation
November 2008
Research Article|
November 25 2008
A new fast reconnection model in a collisionless regime
David Tsiklauri
David Tsiklauri
Joule Physics Laboratory, Institute for Materials Research,
University of Salford
, Manchester M5 4WT, United Kingdom
Search for other works by this author on:
Phys. Plasmas 15, 112903 (2008)
Article history
Received:
August 01 2008
Accepted:
October 29 2008
Citation
David Tsiklauri; A new fast reconnection model in a collisionless regime. Phys. Plasmas 1 November 2008; 15 (11): 112903. https://doi.org/10.1063/1.3029737
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Toward first principles-based simulations of dense hydrogen
Michael Bonitz, Jan Vorberger, et al.
Hybrid direct drive with a two-sided ultraviolet laser
C. A. Thomas, M. Tabak, et al.
Progress toward fusion energy breakeven and gain as measured against the Lawson criterion
Samuel E. Wurzel, Scott C. Hsu
Related Content
Electron nongyrotropy in the context of collisionless magnetic reconnection
Phys. Plasmas (September 2013)
Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas
Phys. Plasmas (August 2010)
Electron demagnetization and collisionless magnetic reconnection in β e ⪡ 1 plasmas
Phys. Plasmas (September 2005)
Nongyrotropic electrons in guide field reconnection
Phys. Plasmas (February 2016)
Kinetic Vlasov simulations of collisionless magnetic reconnection
Phys. Plasmas (September 2006)