The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler’s classical phase-locking condition in the limit where one magnetron becomes the “master” and the other becomes the “slave.” The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.
REFERENCES
1.
P.
Pengvanich
, V. B.
Neculaes
, Y. Y.
Lau
, R. M.
Gilbenbach
, M. C.
Jones
, W. M.
White
, and R. D.
Kowalczyk
, J. Appl. Phys.
98
, 114903
(2005
).2.
V. B.
Neculaes
, Ph.D. dissertation, University of Michigan
(2005
).3.
J.
Weiner
and P.-T.
Ho
, Light-Matter Interaction, Volume 1: Fundamentals and Application
(John Wiley & Sons
, Hoboken
, 2003
), pp. 166
–172
.4.
S. C.
Chen
, IEEE Trans. Plasma Sci.
18
, 570
(1990
).5.
W.
Woo
, J.
Benford
, D.
Fittinghoff
, B.
Harteneck
, D.
Price
, R.
Smith
, and H.
Sze
, J. Appl. Phys.
65
, 861
(1989
).6.
J. S.
Levine
, J.
Benford
, H.
Sze
, W.
Woo
, R. R.
Smith
, and B.
Harteneck
, SPIE Microwave and Particle Beam Sources and Directed Energy Concepts
1061
, 144
(1989
).7.
H. A.
Haus
, IEEE J. Quantum Electron.
QE-11
, 323
(1975
).8.
C.
Chen
, H.-W.
Chan
, and R. C.
Davidson
, SPIE Intense Microwave and Particle Beams II
1407
, 105
(1991
).9.
R.
Adler
, Proc. IRE
34
, 351
(1946
).10.
R. A.
York
, IEEE Trans. Microwave Theory Tech.
41
, 1799
(1993
).11.
J. A.
Acebrón
, L. L.
Bonilla
, C. J. P.
Vicente
, F.
Ritort
, and R.
Spigler
, Rev. Mod. Phys.
77
, 137
(2005
).12.
P.
Pengvanich
, Y. Y.
Lau
, J. W.
Luginsland
, R. M.
Gilgenbach
, E.
Cruz
, and E.
Schamiloglu
, Phys. Plasmas
15
, 073110
(2008
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.