The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler’s classical phase-locking condition in the limit where one magnetron becomes the “master” and the other becomes the “slave.” The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.

1.
P.
Pengvanich
,
V. B.
Neculaes
,
Y. Y.
Lau
,
R. M.
Gilbenbach
,
M. C.
Jones
,
W. M.
White
, and
R. D.
Kowalczyk
,
J. Appl. Phys.
98
,
114903
(
2005
).
2.
V. B.
Neculaes
, Ph.D. dissertation,
University of Michigan
(
2005
).
3.
J.
Weiner
and
P.-T.
Ho
,
Light-Matter Interaction, Volume 1: Fundamentals and Application
(
John Wiley & Sons
,
Hoboken
,
2003
), pp.
166
172
.
4.
S. C.
Chen
,
IEEE Trans. Plasma Sci.
18
,
570
(
1990
).
5.
W.
Woo
,
J.
Benford
,
D.
Fittinghoff
,
B.
Harteneck
,
D.
Price
,
R.
Smith
, and
H.
Sze
,
J. Appl. Phys.
65
,
861
(
1989
).
6.
J. S.
Levine
,
J.
Benford
,
H.
Sze
,
W.
Woo
,
R. R.
Smith
, and
B.
Harteneck
,
SPIE Microwave and Particle Beam Sources and Directed Energy Concepts
1061
,
144
(
1989
).
7.
H. A.
Haus
,
IEEE J. Quantum Electron.
QE-11
,
323
(
1975
).
8.
C.
Chen
,
H.-W.
Chan
, and
R. C.
Davidson
,
SPIE Intense Microwave and Particle Beams II
1407
,
105
(
1991
).
10.
R. A.
York
,
IEEE Trans. Microwave Theory Tech.
41
,
1799
(
1993
).
11.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
12.
P.
Pengvanich
,
Y. Y.
Lau
,
J. W.
Luginsland
,
R. M.
Gilgenbach
,
E.
Cruz
, and
E.
Schamiloglu
,
Phys. Plasmas
15
,
073110
(
2008
).
You do not currently have access to this content.